Αποστολέας Θέμα: ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΕΚΑΠ ΝΟΤΙΟΥ ΑΙΓΑΙΟΥ  (Αναγνώστηκε 4986 φορές)

Κανένας

  • Βετεράνος
  • ****
  • Μηνύματα: 52
ΕΠΙΣΥΝΑΠΤΕΤΑΙ ΑΡΧΕΙΟ PDF ΜΕ ΤΑ ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΟΥ
ΔΙΟΡΓΑΝΩΣΕ ΤΟ ΠΑΡΑΡΤΗΜΑ ΤΗΣ ΠΕΚΑΠ ΣΤΟ ΝΟΤΙΟ ΑΙΓΑΙΟ,
ΣΤΗΝ ΟΠΟΙΑ ΣΥΜΜΕΤΕΙΧΑΝ ΜΑΘΗΤΕΣ ΑΠΟ ΣΧΟΛΕΙΑ ΚΥΚΛΑΔΩΝ ΚΑΙ ΔΩΔΕΚΑΝΗΣΟΥ

11-5-2013
ΕΠΙΣΥΝΑΠΤΩ ΑΠΑΝΤΗΣΕΙΣ
« Τελευταία τροποποίηση: 11 Μάι 2013, 06:05:02 μμ από nobody6 »
ΝΙΚΗΦΟΡΟΣ ΜΑΝΔΗΛΑΡΑΣ
ΓΕΛ ΝΑΞΟΥ

manosteach

  • Βετεράνος
  • ****
  • Μηνύματα: 89
    • ΔΩΡΕΑΝ ONLINE ΜΑΘΗΜΑΤΑ ΑΕΠΠ & ECDL
Απ: ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΕΚΑΠ ΝΟΤΙΟΥ ΑΙΓΑΙΟΥ
« Απάντηση #1 στις: 10 Μάι 2013, 08:21:14 μμ »
Καλησπέρα.
Έχω μία απορία σχετικά με το ερώτημα Δ4.
Ζητάει να βρεί ποιος ή ποιοι αριθμοί εμφανίστηκαν τις λιγότερες φορές;
Ή ζητάει να βρούμε το μεγαλύτερο πλήθος κληρώσεων που έκανε ένας αριθμός να εμφανιστεί;
Αν ζητάει το δεύτερο, και έχω τον αριθμό 6 που εμφανίστηκε στην πρώτη κλήρωση και δεν εμφανίστηκε σε άλλη κλήρωση και τον αριθμό 15 που εμφανίστηκε στην δεύτερη κλήρωση και δεν εμφανίστηκε σε άλλη κλήρωση. Ποιος απο τους δύο αριθμούς θεωρείται οτι καθυστέρησε περισσότερο;
Ευχαριστώ.   
Δωρεάν online μαθήματα μέσω internet.
http://www.manosteach.com

Κανένας

  • Βετεράνος
  • ****
  • Μηνύματα: 52
Απ: ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΕΚΑΠ ΝΟΤΙΟΥ ΑΙΓΑΙΟΥ
« Απάντηση #2 στις: 10 Μάι 2013, 11:06:07 μμ »
ΖΗΤΑΕΙ ΤΟ ΔΕΥΤΕΡΟ ΠΟΥ ΑΝΑΦΕΡΕΙΣ
 ΔΗΛΑΔΗ,
"ζητάει να βρούμε το μεγαλύτερο πλήθος κληρώσεων που έκανε ένας αριθμός να εμφανιστεί"
ΓΙΑ ΤΟ ΠΑΡΑΔΕΙΓΜΑ ΠΟΥ ΔΙΝΕΙΣ ΤΟ 6 ΕΧΕΙ ΚΑΘΥΣΤΕΡΗΣΕΙ ΠΕΡΙΣΣΟΤΕΡΟ
ΜΠΟΡΕΙΣ ΝΑ ΔΕΙΣ ΚΑΙ ΤΟ ΔΙΑΓΩΝΙΣΜΑ ΓΙΑ ΠΡΟΠΟΝΗΜΕΝΟΥΣ ΜΑΘΗΤΕΣ ΣΤΟ ΟΠΟΙΟ ΥΠΑΡΧΕΙ ΤΟ
ΙΔΙΟ ΕΡΩΤΗΜΑ ΚΑΙ Η ΛΥΣΗ ΤΟΥ
ΝΙΚΗΦΟΡΟΣ ΜΑΝΔΗΛΑΡΑΣ
ΓΕΛ ΝΑΞΟΥ

manosteach

  • Βετεράνος
  • ****
  • Μηνύματα: 89
    • ΔΩΡΕΑΝ ONLINE ΜΑΘΗΜΑΤΑ ΑΕΠΠ & ECDL
Απ: ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΕΚΑΠ ΝΟΤΙΟΥ ΑΙΓΑΙΟΥ
« Απάντηση #3 στις: 11 Μάι 2013, 02:33:23 μμ »
Είδα την λύση αλλά έχω άλλη μία απορία.
Αν ο αριθμός 38 εμφανιστεί στην πρώτη κλήρωση και δεν ξανα εμφανιστεί και ο αριθμός 19 εμφανιστεί μόνο στην τελευταία κλήρωση, τότε με βάση την λύση που δίνεται θα εμφανιστεί μόνο ο αριθμός 38.
Στην ουσία όμως και οι δύο αριθμοί έχουν ίδιο αριθμό αποχής απο τις κληρώσεις.

Μήπως δεν καταλαβαίνω κάτι;
Ευχαριστώ.
Δωρεάν online μαθήματα μέσω internet.
http://www.manosteach.com

Κανένας

  • Βετεράνος
  • ****
  • Μηνύματα: 52
ΔΙΕΥΚΡΙΝΗΣΗ
« Απάντηση #4 στις: 11 Μάι 2013, 03:28:25 μμ »
ΑΥΤΟ ΠΟΥ ΔΕΝ ΕΧΕΙΣ ΚΑΤΑΛΑΒΕΙ ΕΙΝΑΙ:
ΣΤΟ ΠΑΡΑΔΕΙΓΜΑ ΣΟΥ ΤΟ 19 ΚΛΗΡΩΘΗΚΕ ΣΤΗΝ ΤΕΛΕΥΤΑΙΑ ΚΛΗΡΩΣΗ
 (ΤΕΛΕΥΤΑΙΑ ΓΡΑΜΜΗ ΤΟΥ ΠΙΝΑΚΑ) ΕΠΟΜΕΝΩΣ Η ΚΑΘΥΣΤΕΡΗΣΗ ΤΟΥ ΣΤΙΣ ΚΛΗΡΩΣΕΙΣ ΕΙΝΑΙ 0. 
ΕΝΩ ΤΟ 38 ΠΟΥ ΚΛΗΡΩΘΗΚΕ ΠΡΩΤΗ ΚΑΙ ΤΕΛΕΥΑΙΑ ΦΟΡΑ  ΣΤΗΝ ΠΡΩΤΗ ΚΛΗΡΩΣΗ,
ΕΧΕΙ ΚΑΘΥΣΤΕΡΗΣΕΙ ΝΑ ΚΛΗΡΩΘΕΙ 2299 ΚΛΗΡΩΣΕΙΣ.

ΠΙΟ ΑΠΛΑ, ΥΠΟΘΕΤΟΥΜΕ ΟΤΙ ΚΑΘΕ ΒΔΟΜΑΔΑ ΚΛΗΡΩΝΕΤΑΙ ΜΙΑ  ΕΞΑΔΑ ΑΡΙΘΜΩΝ
ΕΤΣΙ Η ΕΞΑΔΑ ΣΤΗΝ ΠΡΩΤΗ ΓΡΑΜΜΗ ΤΟΥ ΠΙΝΑΚΑ ΚΛΗΡΩΘΗΚΕ ΠΡΙΝ 2300 ΒΔΟΜΑΔΕΣ.
ΝΙΚΗΦΟΡΟΣ ΜΑΝΔΗΛΑΡΑΣ
ΓΕΛ ΝΑΞΟΥ

ΑλεξανδροςΑναστΓ

  • Νέος
  • *
  • Μηνύματα: 8
Απ: ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΕΚΑΠ ΝΟΤΙΟΥ ΑΙΓΑΙΟΥ
« Απάντηση #5 στις: 11 Μάι 2013, 03:47:14 μμ »
ναι φιλε μου,,,αποτι καταλαβα κι εγω,δε ζηταει ουσιαστικα πληθος αποχης...ζηταει  το μεγαλυτερο πληθος των σερι κληρωσεων που δεν εμφανιστηκε ο αριθμος..!Στο παραδειγμα που ανέφερες ο 1ος αριθμος εχει 2299 σερι κληρωσεις να κληρωθει ενω το τελευταιος 0!Συνεπως βρίσκοντας ενα πλήθοσ αναζητώντας ως αληθή συνθήκη μέτρησεις τις ΣΕΡΙ κληρώσεις στις οποίες δεν κληρώθηκε ένας αριθμός,βρίσκοντας το μέγιστο των αθροισμάτων απαντάς!Η μέτρηση  φυσικά θα γίνει ανά στήλη αφού εξαιτάζεις τους αριθμούς!Ελπίζω να βοήθησα!

manosteach

  • Βετεράνος
  • ****
  • Μηνύματα: 89
    • ΔΩΡΕΑΝ ONLINE ΜΑΘΗΜΑΤΑ ΑΕΠΠ & ECDL
Απ: ΔΙΕΥΚΡΙΝΗΣΗ
« Απάντηση #6 στις: 11 Μάι 2013, 03:57:43 μμ »
ΑΥΤΟ ΠΟΥ ΔΕΝ ΕΧΕΙΣ ΚΑΤΑΛΑΒΕΙ ΕΙΝΑΙ:
ΣΤΟ ΠΑΡΑΔΕΙΓΜΑ ΣΟΥ ΤΟ 19 ΚΛΗΡΩΘΗΚΕ ΣΤΗΝ ΤΕΛΕΥΤΑΙΑ ΚΛΗΡΩΣΗ
 (ΤΕΛΕΥΤΑΙΑ ΓΡΑΜΜΗ ΤΟΥ ΠΙΝΑΚΑ) ΕΠΟΜΕΝΩΣ Η ΚΑΘΥΣΤΕΡΗΣΗ ΤΟΥ ΣΤΙΣ ΚΛΗΡΩΣΕΙΣ ΕΙΝΑΙ 0.
 
ΕΝΩ ΤΟ 38 ΠΟΥ ΚΛΗΡΩΘΗΚΕ ΠΡΩΤΗ ΚΑΙ ΤΕΛΕΥΑΙΑ ΦΟΡΑ  ΣΤΗΝ ΠΡΩΤΗ ΚΛΗΡΩΣΗ,
ΕΧΕΙ ΚΑΘΥΣΤΕΡΗΣΕΙ ΝΑ ΚΛΗΡΩΘΕΙ 2299 ΚΛΗΡΩΣΕΙΣ.

ΠΙΟ ΑΠΛΑ, ΥΠΟΘΕΤΟΥΜΕ ΟΤΙ ΚΑΘΕ ΒΔΟΜΑΔΑ ΚΛΗΡΩΝΕΤΑΙ ΜΙΑ  ΕΞΑΔΑ ΑΡΙΘΜΩΝ
ΕΤΣΙ Η ΕΞΑΔΑ ΣΤΗΝ ΠΡΩΤΗ ΓΡΑΜΜΗ ΤΟΥ ΠΙΝΑΚΑ ΚΛΗΡΩΘΗΚΕ ΠΡΙΝ 2300 ΒΔΟΜΑΔΕΣ.
Μάλλον αλλιώς αντιλαμβάνομαι την καθυστέρηση, που ζητάμε να βρούμε.
Γιατί εγώ, στο παραπάνω παράδειγμα θα έλεγα: Το 38 εμφανίστηκε στην πρώτη κλήρωση που έγινε, άρα δεν καθυστέρησε να εμφανιστεί στις κληρώσεις καθόλου, ενώ το 19 καθυστέρησε 2999 κληρώσεις να εμφανιστεί.
Νομίζω οτι το συγκεκριμένο ερώτημα δεν είναι και πολύ κατανοητό με τον τρόπο που τέθηκε.
Δωρεάν online μαθήματα μέσω internet.
http://www.manosteach.com

avasilis

  • Νέος
  • *
  • Μηνύματα: 4
Απ: ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΕΚΑΠ ΝΟΤΙΟΥ ΑΙΓΑΙΟΥ
« Απάντηση #7 στις: 11 Μάι 2013, 04:20:05 μμ »
Γεια σας η λύση υπάρχει κάπου?

ΑλεξανδροςΑναστΓ

  • Νέος
  • *
  • Μηνύματα: 8
Απ: ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΕΚΑΠ ΝΟΤΙΟΥ ΑΙΓΑΙΟΥ
« Απάντηση #8 στις: 11 Μάι 2013, 04:28:31 μμ »
Μια υπόδειξη θα μπορούσε να έιναι(δε θυμάμαι τις ονομασίες των πινάκων!)
!ΜΗΔΕΝΙΖΩ ΤΟΝ ΠΙΝΑΚΑ ΜΕ ΤΑ ΠΛΗΘΗ ΤΩΝ ΚΛΗΡΩΣΕΩ ΚΑΘΥΣΤΕΡΗΣΗΣ!
ΓΙΑ Ι ΑΠΟ 1 ΜΕΧΡΙ 49
Μ[Ι]<--0
ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ
!ΞΕΚΙΝΑΩ ΓΙΑ ΚΑΘΕ ΑΡΙΘΜΟ ΑΠΟ ΤΟΥΣ 49 ΝΑ ΜΕΛΕΤΑΑΩ ΣΕ ΚΑΘΕ ΚΛΗΡΩΣΗ ΑΝ ΚΛΗΡΩΘΗΚΕ
ΓΙΑ Ρ ΑΠΟ 1 ΜΕΧΡΙ 49
ΓΙΑ Ι ΑΠΟ 1 ΜΕΧΡΙ 2300
Μ<--0
ΓΙΑ Κ ΑΠΟ 1 ΜΕΧΡΙ 6
ΑΝ ΚΛΗΡ[Ι,Κ]=Ρ ΤΟΤΕ
Μ<--Μ+1
ΤΕΛΟΣ_ΑΝ
ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ
!ΑΝ ΔΕΝ ΚΛΗΡΩΘΗΚΕ ΑΥΞΑΝΩ ΤΟ ΠΛΗΘΟΣ...ΔΗΛΑΔΗ +1 ΚΛΗΡΩΣΗ ΠΟΥ ΚΑΘΥΣΤΕΡΗΣΕ
ΑΝ Μ=0 ΤΟΤΕ
Μ[Ρ]<--Μ[Ρ]+1
ΑΛΛΙΩΣ
!ΑΛΛΙΩΣ ΜΗΔΕΝΙΖΩ ΤΟ ΠΛΗΘΟΣ ΑΦΟΥ ΚΛΗΡΩΘΗΚΕ
Μ[Ρ]<--0
ΤΕΛΟΣ_ΑΝ
ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ
ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ
!ΞΕΚΙΝΑΩ ΓΙΑ ΤΗΝ ΕΥΡΕΣΗ ΜΑΧ ΚΛΑΣΙΚΑ
ΜΑΧ<--Μ[1]
.........
.........
.........
ΔΕΝ ΕΙΝΑΙ ΒΕΛΤΙΣΤΟΣ ΟΥΤΕ ΑΝΑΓΚΑΣΤΙΚΑ ΣΩΣΤΟΣ ΚΑΙ ΕΓΩ ΜΑΘΗΤΗΣ ΕΙΜΑΙ ΚΑΙ ΜΑΘΑΙΝΩ ΑΚΟΜΑ!!!!


ΑλεξανδροςΑναστΓ

  • Νέος
  • *
  • Μηνύματα: 8
Απ: ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΕΚΑΠ ΝΟΤΙΟΥ ΑΙΓΑΙΟΥ
« Απάντηση #9 στις: 11 Μάι 2013, 04:29:59 μμ »
ΣΤΟ ΠΙΟ ΠΑΝΩ ΜΟΥ ΣΧΟΛΙΟ ΠΟΥ ΜΙΛΟΥΣΑ ΓΙΑ ΣΤΗΛΕΣ...ΓΡΑΨΕ ΑΚΥΡΟ!!!

manosteach

  • Βετεράνος
  • ****
  • Μηνύματα: 89
    • ΔΩΡΕΑΝ ONLINE ΜΑΘΗΜΑΤΑ ΑΕΠΠ & ECDL
Απ: ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΕΚΑΠ ΝΟΤΙΟΥ ΑΙΓΑΙΟΥ
« Απάντηση #10 στις: 11 Μάι 2013, 05:37:51 μμ »
Θα προσπαθήσω να δώσω μια λύση με βάση αυτό που καταλαβαίνω εγώ.

!Δημιουργώ έναν πίνακα ΚΑΘ[2300,49] όπου η κάθε στήλη του αντιστοιχεί και σε ένα απο τα νούμερα και η κάθε γραμμή σε κάθε
!μια κλήρωση. Στην Αρχή τον μηδενίζω.
Για ι απο 1 μεχρι 2300
  Για ξ απο 1 μεχρι 49
    ΚΑΘ[ι,ξ]<--0
  Τέλος_Επανάληψης
Τέλος_Επανάληψης
!Σαρώνω τον πίνακα ΛΟΤΟ[2300,6] που περιέχει τους αριθμούς της κάθε κλήρωσης. κάνοντας 1 την αντίστοιχη θέση του πίνακα
!ΚΑΘ[2300,49]. Δηλαδή αν στην κλήρωση 1125 έχει κληρωθεί ο αριθμός 37, κάνω 1 το στοιχείο ΚΑΘ[1125,37]
Για ι απο 1 μεχρι 2300
  Για ξ απο 1 μεχρι 6
    Μ<--ΛΟΤΟ[ι,ξ]
    ΚΑΘ[ι,Μ]<--1
  Τέλος_Επανάληψης
Τέλος_Επανάληψης
! Χρησιμοποιώ έναν πίνακα ΠΛΚΑΘ[49] στον οποίο θα καταχωρώ το μεγαλύτερο διάστημα που έκανε ο κάθε αριθμός απο τους
!49 να εμφανιστεί. Στην αρχή τον μηδενίζω
Για ι απο 1 μεχρι 49
ΠΛΚΑΘ[ι]<--0
Τέλος_επανάληψης
!Σαρώνω τον πίνακα ΚΑΘ κατά στήλες, και μετράω συνεχόμενα  μηδενικά.Μόλις βρώ 1 δηλαδή κληρώθηκε, συγκρίνω το πλήθος
!των μηδενικών που βρήκα μέχρι εκείνη την στιγμή με την αντίστοιχη θέση του πίνακα ΠΛΚΑΘ, δηλαδή άν σαρώνω την 15
!στήλη του πίνακα θα συγκρίνω με το στοιχείο ΠΛΚΑΘ[15], αν είναι μεγαλύτερο το πλήθος των μηδενικών αντικαθιστώ.
Για ι απο 1 μεχρι 49
  Ζ<--0
    Για ξ απο 1 μεχρι 2300
     Αν ΚΑΘ[ι,ξ]=0 τοτε
      Ζ<--Ζ+1
     Αλλιως
      Αν Ζ>ΠΛΚΑΘ[ι] τοτε
        ΠΛΚΑΘ[ι]<--Ζ
      Τέλος_Αν
      Ζ<--0
     Τέλος_Αν   
    Τέλος_Επανάληψης
Τέλος_Επανάληψης
! Έτσι ο πίνακας ΠΛΚΑΘ θα περιέχει το μεγαλύτερο πλήθος συνεχόμενων κληρώσεων που έκανε να εμφανιστεί ο κάθε αριθμός
! και υπολογίζοντας με τον κλασικό τρόπο τον μέγιστο εμφανίζω την θέση του.

Αυτή πιστεύω οτι είναι μια ορθή λύση.
Αλλά θεωρώ οτι θα έπρεπε στην εκφώνηση να αναφερόταν σε  "πλήθος συνεχόμενων κληρώσεων που έκανε να εμφανιστεί ο κάθε αριθμός"
Δωρεάν online μαθήματα μέσω internet.
http://www.manosteach.com

Κανένας

  • Βετεράνος
  • ****
  • Μηνύματα: 52
ΔΙΕΥΚΡΙΝΗΣΗ
« Απάντηση #11 στις: 11 Μάι 2013, 06:29:39 μμ »
ΕΓΙΝΕ ΕΠΙΣΥΝΑΨΗ ΕΝΔΕΙΚΤΙΚΩΝ ΑΠΑΝΤΗΣΕΩΝ ΣΤΗΝ ΑΡΧΙΚΗ ΚΑΤΑΧΩΡΗΣΗ ΤΟΥ ΘΕΜΑΤΟΣ.

ΤΩΡΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΕΝΝΟΙΑ "ΚΑΘΥΣΤΕΡΗΣΗ ΚΛΗΡΩΣΗΣ".
ΕΝΑ ΥΠΟΨΗΦΙΟ ΠΑΙΚΤΗ ΤΟΥ ΛΟΤΤΟ ΙΣΩΣ ΤΟΝ ΕΝΔΙΑΦΕΡΕΙ ΝΑ ΓΝΩΡΙΖΕΙ ΠΟΙΟΣ ΑΡΙΘΜΟΣ(ΟΙ)
ΕΧΕΙ(ΟΥΝ)  ΚΑΘΥΣΤΕΡΗΣΕΙ ΠΕΡΙΣΣΟΤΕΡΟ ΑΠ' ΤΟΥΣ ΑΛΛΟΥΣ ΝΑ ΚΛΗΡΩΘΕΙ(ΟΥΝ), ΥΠΟΛΟΓΙΖΟΝΤΑΣ ΩΣ ΑΡΧΗ ΤΗΝ ΗΜΕΡΟΜΗΝΙΑ ΤΗΣ ΤΕΛΕΥΤΑΙΑΣ ΚΛΗΡΩΣΗΣ.
ΕΤΣΙ ΟΙ 6 ΑΡΙΘΜΟΙ ΠΟΥ ΕΙΝΑΙ ΚΑΤΑΧΩΡΗΜΕΝΟΙ ΣΤΗΝ 2300η ΓΡΑΜΜΗ ΤΟΥ ΠΙΝΑΚΑ ΕΙΝΑΙ ΑΥΤΟΙ ΠΟΥ ΕΧΟΥΝ ΤΗ ΜΙΚΡΟΤΕΡΗ ΚΑΘΥΣΤΕΡΗΣΗ ΚΛΗΡΩΣΗΣ.
ΑΝ ΔΟΥΜΕ ΤΗΝ ΙΣΤΟΣΕΛΙΔΑ ΤΟΥ ΟΠΑΠ ΘΑ ΔΟΥΜΕ ΑΥΤΗ ΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΠΛΗΡΟΦΟΡΙΑ ΚΑΙ ΜΑΛΙΣΤΑ ΓΙΑ ΚΑΘΕ ΑΡΙΘΜΟ.
ΝΙΚΗΦΟΡΟΣ ΜΑΝΔΗΛΑΡΑΣ
ΓΕΛ ΝΑΞΟΥ

manosteach

  • Βετεράνος
  • ****
  • Μηνύματα: 89
    • ΔΩΡΕΑΝ ONLINE ΜΑΘΗΜΑΤΑ ΑΕΠΠ & ECDL
Απ: ΔΙΕΥΚΡΙΝΗΣΗ
« Απάντηση #12 στις: 11 Μάι 2013, 06:44:58 μμ »
ΕΓΙΝΕ ΕΠΙΣΥΝΑΨΗ ΕΝΔΕΙΚΤΙΚΩΝ ΑΠΑΝΤΗΣΕΩΝ ΣΤΗΝ ΑΡΧΙΚΗ ΚΑΤΑΧΩΡΗΣΗ ΤΟΥ ΘΕΜΑΤΟΣ.

ΤΩΡΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΕΝΝΟΙΑ "ΚΑΘΥΣΤΕΡΗΣΗ ΚΛΗΡΩΣΗΣ".
ΕΝΑ ΥΠΟΨΗΦΙΟ ΠΑΙΚΤΗ ΤΟΥ ΛΟΤΤΟ ΙΣΩΣ ΤΟΝ ΕΝΔΙΑΦΕΡΕΙ ΝΑ ΓΝΩΡΙΖΕΙ ΠΟΙΟΣ ΑΡΙΘΜΟΣ(ΟΙ)
ΕΧΕΙ(ΟΥΝ)  ΚΑΘΥΣΤΕΡΗΣΕΙ ΠΕΡΙΣΣΟΤΕΡΟ ΑΠ' ΤΟΥΣ ΑΛΛΟΥΣ ΝΑ ΚΛΗΡΩΘΕΙ(ΟΥΝ), ΥΠΟΛΟΓΙΖΟΝΤΑΣ ΩΣ ΑΡΧΗ ΤΗΝ ΗΜΕΡΟΜΗΝΙΑ ΤΗΣ ΤΕΛΕΥΤΑΙΑΣ ΚΛΗΡΩΣΗΣ.
ΕΤΣΙ ΟΙ 6 ΑΡΙΘΜΟΙ ΠΟΥ ΕΙΝΑΙ ΚΑΤΑΧΩΡΗΜΕΝΟΙ ΣΤΗΝ 2300η ΓΡΑΜΜΗ ΤΟΥ ΠΙΝΑΚΑ ΕΙΝΑΙ ΑΥΤΟΙ ΠΟΥ ΕΧΟΥΝ ΤΗ ΜΙΚΡΟΤΕΡΗ ΚΑΘΥΣΤΕΡΗΣΗ ΚΛΗΡΩΣΗΣ.
ΑΝ ΔΟΥΜΕ ΤΗΝ ΙΣΤΟΣΕΛΙΔΑ ΤΟΥ ΟΠΑΠ ΘΑ ΔΟΥΜΕ ΑΥΤΗ ΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΠΛΗΡΟΦΟΡΙΑ ΚΑΙ ΜΑΛΙΣΤΑ ΓΙΑ ΚΑΘΕ ΑΡΙΘΜΟ.
Με βάση την διευκρίνηση που έκανες θα συμφωνήσω μαζί σου.
Ίσως και να είμαι απο τους ελάχιστους που δεν το ερμήνευσαν έτσι. Για να είμαι ειλικρινής όμως, όποιος μαθητής μου προσπάθησε να λύση την συγκεκριμένη άσκηση με ρωτούσε το ίδιο πράμα.   
Θα εκφράσω την ταπεινή μου  άποψη. Το θέμα ήταν πάρα πολύ καλό απλά νομίζω οτι στο συγκεκριμένο ερώτημα θα έπρεπε να έχει παράδειγμα. Αν έμπαινε το ίδιο ακριβώς θέμα στις εξετάσεις; Τι θα λέγαμε;
Θα το πω άλλη μία φορά ίσως να είμαι απο τους ελάχιστους ή και ο μόνος που δεν κατάλαβε τι ακριβώς ζητούσε.
 
Δωρεάν online μαθήματα μέσω internet.
http://www.manosteach.com

Κανένας

  • Βετεράνος
  • ****
  • Μηνύματα: 52
Απ: ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΕΚΑΠ ΝΟΤΙΟΥ ΑΙΓΑΙΟΥ
« Απάντηση #13 στις: 11 Μάι 2013, 07:14:59 μμ »
Με βάση την διευκρίνηση που έκανες θα συμφωνήσω μαζί σου.
Ίσως και να είμαι απο τους ελάχιστους που δεν το ερμήνευσαν έτσι. Για να είμαι ειλικρινής όμως, όποιος μαθητής μου προσπάθησε να λύση την συγκεκριμένη άσκηση με ρωτούσε το ίδιο πράμα.   
Θα εκφράσω την ταπεινή μου  άποψη. Το θέμα ήταν πάρα πολύ καλό απλά νομίζω οτι στο συγκεκριμένο ερώτημα θα έπρεπε να έχει παράδειγμα. Αν έμπαινε το ίδιο ακριβώς θέμα στις εξετάσεις; Τι θα λέγαμε;
Θα το πω άλλη μία φορά ίσως να είμαι απο τους ελάχιστους ή και ο μόνος που δεν κατάλαβε τι ακριβώς ζητούσε.
 
ΕΧΕΙΣ ΔΙΚΙΟ!
ΔΕΝ ΕΙΧΑ ΣΚΕΦΤΕΙ ΟΤΙ ΘΑ ΜΠΟΡΟΥΣΕ ΝΑ ΤΕΘΕΙ ΚΑΙ ΤΕΤΟΙΟ ΕΡΩΤΗΜΑ:
"ΠΟΙΟΣ ΑΡΙΘΜΟΣ ΚΑΘΥΣΤΕΡΗΣΕ ΠΕΡΙΣΣΟΤΕΡΟ ΝΑ ΚΛΗΡΩΘΕΙ  Σ'ΟΛΟ ΤΟ ΙΣΤΟΡΙΚΟ ΤΩΝ ΚΛΗΡΩΣΕΩΝ ΤΟΥ ΛΟΤΤΟ".
ΝΙΚΗΦΟΡΟΣ ΜΑΝΔΗΛΑΡΑΣ
ΓΕΛ ΝΑΞΟΥ

accordionman

  • Οπαδός
  • **
  • Μηνύματα: 19
Απ: ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΕΚΑΠ ΝΟΤΙΟΥ ΑΙΓΑΙΟΥ
« Απάντηση #14 στις: 11 Μάι 2013, 07:39:11 μμ »
Μπράβο σας παιδιά!  Τα θέματα αρκετά καλά ειδικά το Δ Θέμα. Θα ήθελα να πώ και εγώ πως το ερώτημα που αφορούσε την 'Καθυστέρηση της κλήρωσης΄ ηταν λιγάκι δυσκολονόητο. Όπως είπε και ο φίλος manosteach ένα παραδειγματάκι θα έλυνε τις απορίες όλων.  Γενικότερα, τα θέματα ήταν άψογα και μου πήρε ακριβώς τρεις ωρες να τα λύσω. ( ΑΑ είμαι μαθητής της Γ λυκείου)