«Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή»
Πόσο σωστή φράση και πόσο παρεξηγημένη!!!
Είναι αρχή μου να καταλαβαίνω τι ακριβώς εννοεί μια φράση και ποιες ήταν οι ανάγκες που την γέννησαν. Γενικά για να καταλάβεις κάτι θα πρέπει να ξέρεις τις συνθήκες υπό τις οποίες ειπώθηκε. Τι είχε στο νου του αυτός που την είπε; Δεν είναι οι άνθρωποι για τους κανόνες. Οι κανόνες είναι για τους ανθρώπους. Εμείς τους φτιάχνουμε τους κανόνες για κάποιο σκοπό. Αν βλέπουμε να λειτουργούν παραπλανητικά μπορούμε να τους αλλάξουμε/αναδιατυπώσουμε/καταργήσουμε κλπ
Εγώ απευθύνομαι σε επιστήμονες: Αν κάποιος κανόνας είναι λάθος (που ο συγκεκριμένος δεν είναι) υπάρχει πρόβλημα στο να τον καταργήσουμε;
Στο θέμα τώρα.
Στην επιστήμη πρέπει να δεχόμαστε τις διαφορετικές αλλά τεκμηριωμένες λύσεις. Να ένα παράδειγμα που μου έχει συμβεί στο μάθημα της φυσικής.
Έστω 2 πόλεις Α και Β (παρακάτω σχήμα) που απέχουν απόσταση S.
Α ----> < ------ Β
Ένα αυτοκίνητο ξεκινάει από την πόλη Α και κατευθύνεται προς την πόλη Β με ταχύτητα υα και ένα άλλο αυτοκίνητο ξεκινάει από την πόλη Β και κατευθύνεται προς την πόλη Α με ταχύτητα υβ. Να βρείτε το χρόνο και το σημείο συνάντησης.
Η λύση που διδάσκεται στο σχολείο είναι απλή: Θέτεις χ την απόσταση ας πούμε από το σημείο Α και παίρνεις τις εξισώσεις κίνησης για κάθε κινητό.
Άρα έχουμε
x = υα*t
S-x = υβ*t
Λύνουμε το σύστημα με κάποια από τις μεθόδους των μαθηματικών και έχουμε
t = S/(υα+υβ)
x = υα*S/(υα+υβ)
Αυτή είναι η κλασσική λύση που διδάσκονται στο σχολείο.
Όταν ήμουν μαθητής έκανα το εξής:
Αντί να λύσω το πρόβλημα στο σύστημα αναφοράς της γης είπα να το λύσω στο σύστημα αναφοράς του αυτοκινήτου που ξεκινάει από την πόλη Α. Μέσα από τα μάτια αυτού του οδηγού λοιπόν ο ίδιος είναι ακίνητος και ο β κινείται με ταχύτητα υα+υβ κατά πάνω του. ʼρα θα τον φτάσει σε χρόνο. t = S/(υα+υβ).
Και σε τόσο χρόνο ο ίδιος θα έχει καλύψει απόσταση x = υα*t = υα*S/(υα+υβ)
Ο καθηγητής στο σχολείο δεν αποδέχτηκε τη λύση γιατί είπε ότι δεν την έχει έτσι το βιβλίο και δεν την έχουμε διδαχθεί με αυτό τον τρόπο. Μου είπε ότι δεν επιτρέπεται να λύσω το πρόβλημα μέσα από τα μάτια κάποιου άλλου και ότι κάνω του κεφαλιού μου και πράγματα αστήρικτα. Επειδή και εγώ ήμουν λίγο παρορμητικός η κουβέντα έληξε με καυγά.
Ανάλογα επεισόδια είχαμε όταν του είπα ότι σε ένα πρόβλημα ελεύθερης πτώσης μπορώ να βρω το χρόνο που θα κάνει να φτάσει κάτι στο έδαφος χρησιμοποιώντας όχι τους νόμους της κινητικής αλλά το θεώρημα ώθησης-ορμής.
Αρχική ορμή + ώθηση βάρους = τελική ορμή
m*υο + m*g*t = m*υτελ
άρα υο + g*t = υτελ
που είναι ο νόμος της κινητικής.
Πάλι καυγάς, πάλι επεισόδια κλπ κλπ. Η ιστορία αυτή επαναλήφθηκε πολλές φορές. Ποτέ δεν κατάλαβε ο καθηγητής ότι εμένα με ένοιαζε να δω με τα μάτια μου την αυτοσυνέπεια των νόμων της φύσης. Αν τη δεχόμουν επειδή μου το έλεγαν δε θα ήμουν επιστήμονας, θα ήμουν πιστός (έστω και της επιστήμης). Ο καθηγητής με θεωρούσε σε όλα λάθος.
Εδώ λοιπόν μπαίνει ο κανόνας «Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή». Σκοπός του είναι να προστατέψει το μαθητή από την αυθαιρεσία του καθηγητή. ΠΟΥΘΕΝΑ δεν παραβίασα κανόνα της επιστήμης της φυσικής. Στην πρώτη περίπτωση δούλεψα σε ισοδύναμο σύστημα αναφοράς. Στη δεύτερη δούλεψα με γνωστό θεώρημα της φυσικής. Κάθε φορά εφάρμοσα γνωστό νόμο και η απάντηση ήταν επιστημονικά τεκμηριωμένη. Γιατί λοιπόν να μην είναι αποδεκτή;
Εδώ όμως τα πράγματα δεν είναι ίδια. Η πληροφορική στηρίζεται όχι σε αλγεβρικές αλλά σε αλγοριθμικές λύσεις στις οποίες το πλήθος των βημάτων (μέσω των εννοιών της πολυπλοκότητας και της τάξης) έχει κεντρικό ρόλο. Βλέπε
https://alkisg.mysch.gr/steki/index.php?topic=988.msg5506#msg5506Η εύρεση μεγίστου με πλήρη ταξινόμηση παραβιάζει αρχές της επιστήμης. Δεν είναι μόνο η ορθότητα του αλγορίθμου ο στόχος της πληροφορικής. Είναι και η απόδοση. Σεβόμενος αυτές τις αρχές προτείνω στα πλαίσια που μας επιτρέπει το σχολικό επίπεδο οι κακές λύσεις να χάνουν πόντους. Προσοχή: Δεν πρότεινα οι καλές λύσεις να παίρνουν παραπάνω. Πρότεινα οι κακές λύσεις να χάνουν πόντους για να μείνουν αναγκαστικά πίσω. Θα γίνει και πιο ωραίο το μάθημα αφού ο μαθητής θα καταλαβαίνει τι ακριβώς κάνει.
Όταν διατυπώθηκε η φράση για την οποία μιλάμε δεν είχαν στο νου τους οι άνθρωποι την αλγοριθμική προσέγγιση επίλυσης προβλημάτων αλλά μόνο την αλγεβρική. Εγώ ο ίδιος θα μπορούσα να την είχα διατυπώσει έτσι τη συγκεκριμένη φράση πριν από 15 χρόνια. Αλλά όπως πάντα στέκομαι στην ουσία. Δε φτιάξαμε ένα κανόνα για να μας πνίξει. Πρέπει να ξέρουμε κάθε στιγμή το πνεύμα του.