Στάθη είχαμε πει πιο παλιά να ακολουθήσουμε τον ορισμό της ακέραιας διαίρεσης του Ευκλείδη όπως αυτός περιγράφεται στο βιβλίο των μαθηματικών κατεύθυνσης της Β λυκείου. Να υπάρχει και συνέχεια μεταξύ των βιβλίων και ειδικά να είμαστε σύμφωνοι με τα μαθηματικά που κάνουν τα παιδιά (έστω και με τα εκτός ύλης κομμάτια).
Το θεώρημα της ακεραίας διαίρεσης του Ευκλείδη στο βιβλίο των μαθηματικών κατεύθυνσης της Β λυκείου διατυπώνεται ως εξής:
Αν α και β ακέραιοι με β≠0 , τότε υπάρχουν μοναδικοί ακέραιοι κ και υ, τέτοιοι, ώστε
α=κβ+υ, 0≤υ<|β|.
και είναι ισοδύναμο με το παρακάτω:
Γιὰ κάθε Ϲεῦγος ἀκεραίων (a, b) μὲ b > 0 ὑπάρχει ἕνα μοναδικὸ Ϲεῦγος ἀκεραίων (q, r), τέτοιο ὥστε
a = bq + r καὶ 0 ≤ r < b .
στο οποίο απαιτείται ο διαιρέτης b να είναι θετικός ακέραιος (φυσικός)
δεδομένου ότι a/-b=-a/b και -a/-b=a/b.
Ο τελεστής mod όπου εφαρμόζεται πάντως πρέπει να επιστρέφει μη αρνητικό αποτέλεσμα.