Αποστολέας Θέμα: aporia se askiseis ths anaptixis  (Αναγνώστηκε 4481 φορές)

kkbaxr4

  • Νέος
  • *
  • Μηνύματα: 8
aporia se askiseis ths anaptixis
« στις: 13 Φεβ 2006, 11:42:54 πμ »
1) Θα ήθελα να μου δώσει κάποιος μια λύση για την άσκηση ΔΣ4 του τετραδίου μαθητή στο ΚΕΦ.3. Ο κύριοσ βρακόπουλος προτείνει μια λύση στο  site (http://2lyk-kater.pie.sch.gr/users/braat/aepp1/Aespp.htm) αλλά αυτή η λύση χρησιμοποιεί την δομή της εγγραφής η οποία αν δεν απατώμαι δεν είναι αντικείμενο της διδακτέας ύλης.Υπάρχει άλλος τρόπος υλοποίησης του αλγορίθμου για το πρόβλημα;
2) Πως γίνεται η ταξινόμηση ενός δισδιάστατου πίνακα ως προς μια στήλη του πίνακα;
3) Στο βοηθητικό βιβλίο του Σαββάλα "Ανάπτυξη εφαρμογών σε προγραμματιστικό περιβάλλον" των Κωνσταντίνου Γ. Ντζιου-Ιωάννη Χ. Κοψίνη υπάρχει η άσκηση 7.77 η οποία λέει τα εξής:Να γίνει αλγόριθμος που να δέχεται μια ακολουθία 50 ακεραίων αριθμών και στη συνέχεια θα εμφανίζει το πλήθος των διαδοχικών στοιχείων της ακολουθίας που έχει το μεγαλύτερο άθροισμα. Για παράδειγμα αν είχαμε την ακολουθία 4 -6 2 8 5 13 -3 7 -7 3 τότε έπρεπε να μας εμφανίσει την τιμή 6 αφού τα διαδοχικά στοιχεία με το μεγαλύτερο άθροισμα είναι τα 2 8 5 13 -3 7 με άθροισμα 32 και πλήθος στοιχείων 6.
Πως λύνεται ο αλγόριθμος;Οποιος μπορει να απαντήσει σε κάποια από τις απορίες είμαι ευγνώμων.

Παναγιώτης Τσιωτάκης

  • Ομάδα Νέου Λυκείου
  • *
  • Μηνύματα: 3219
  • I love you 3000
    • Panagiotis Tsiotakis
Απ: aporia se askiseis ths anaptixis
« Απάντηση #1 στις: 13 Φεβ 2006, 12:43:11 μμ »
1.  http://users.kor.sch.gr/ptsiotakis/aepp/aepp_tm_3.htm   ΔΣ4
2.  http://users.kor.sch.gr/ptsiotakis/aepp/aepp_ask3_3.htm   άσκηση 6
3.  Δεν έχει λύση το βιβλίο; Εγώ πάντως την εκφώνηση δεν την καταλαβαίνω, λείπει κάτι;

Με εκτίμηση,

andreas_p

  • Ομάδα διαγωνισμάτων 2010
  • *
  • Μηνύματα: 1015
Απ: aporia se askiseis ths anaptixis
« Απάντηση #2 στις: 13 Φεβ 2006, 01:14:37 μμ »
2) Πώς γίνεται η ταξινόμηση ενός δισδιάστατου πίνακα ως προς μια στήλη του πίνακα;

Δεν το καταλαβαίνω ;;;

Γιατί δισδιάστατος ;;;

Έτος  CD ( ΑΚΕΡΑΙΕΣ) και  Τίτλος CD (ΧΑΡΑΚΤΗΡΕΣ)

σε ΕΝΑΝ πίνακα δισδιάστατο  ;;; (Νx2)

Εδώ έχουμε  ΠΑΡΑΛΛΗΛΟΥΣ ΠΙΝΑΚΕΣ  !

Ανδρέας

kkbaxr4

  • Νέος
  • *
  • Μηνύματα: 8
Απ: aporia se askiseis ths anaptixis
« Απάντηση #3 στις: 13 Φεβ 2006, 01:54:17 μμ »
andreas_p το 1 με το 2 είναι ανεξάρτητα. Απλά πες πως έχω έναν δυσδιάστατο πίνακα ακεραίων πχ 3Χ2 και θέλω να τον ταξινομήσω σε αύξουσα σειρά ως προς την δεύτερη στήλη.
ptiotakis to 3 είναι αυτούσια η άσκηση δεν λείπει τίποτα.Ευχαριστώ πάντως..

gpapargi

  • Γενικός διαχειριστής
  • *****
  • Μηνύματα: 2452
  • I 'm not young enough to know everything
Απ: aporia se askiseis ths anaptixis
« Απάντηση #4 στις: 13 Φεβ 2006, 03:28:26 μμ »
3. Χρησιμοποίησε 2 δείκτες. Ο πρώτος σαρώνει από το πρώτο στοιχείο του πίνακα μέχρι το τελευταίο. Ο δεύτερος δείκτης θα σαρώνει από τον πρώτο δείκτη μέχρι το τελευταίο στοιχείο του πίνακα. Οι 2 δείκτες είναι φωλιασμένοι. Για κάθε θέση των 2 δεικτών θα βρίσκεις το άθροισμα των στοιχείων του πίνακα από τον πρώτο μέχρι τον δεύτερο δείκτη. Έτσι θα σχηματίσεις όλα τα διαδοχικά αθροίσματα.  Τελικά θα κρατήσεις το μεγαλύτερο.

bagelis1

  • Επισκέπτης
Απ: aporia se askiseis ths anaptixis
« Απάντηση #5 στις: 14 Φεβ 2006, 09:29:29 πμ »
Αλγόριθμος ΤαξινόμησηΩςπροςστήλη
Δεδομένα //Α, Ν, Μ, χ// !χ είναι η στήλη από την οποία ταξινομώ

Για ι από 2 μέχρι Ν
   Για j από Ν μέχρι ι με_βήμα -1
         Αν Α[j , x] < A[j-1, x] τότε                ! Αύξουσα
                Για λ από 1 μέχρι Μ                   ! Αντιμετάθεση όλης της γραμμής, στοιχείο προς στοιχείο
                       Αντιμετάθεσε Α[j, λ], A[j-1, l]
                Τέλος_Επανάληψης
         Τέλος_Αν
   Τέλος_Επανάληψης
Τέλος_Επανάληψης
Αποτελέσματα //Α//
Τέλος ΤαξινόμησηΩςΠροςΣτήλη

klitos

  • Ομάδα διαγωνισμάτων 2010
  • *
  • Μηνύματα: 133
Απ: aporia se askiseis ths anaptixis
« Απάντηση #6 στις: 14 Φεβ 2006, 12:46:45 μμ »
απάντηση για το 2ο θεμα υπάρχει σε αρκετά βοηθήματα και ειναι ενα απο τα "ενδιαφέροντα" θέματα
κλητος χατζηγεωργιου