Ωραία όλα αυτά με τα μαθηματικά, δε λέω, όμως μου κακοφαίνεται λίγο να πρέπει να ... εμβαθύνω τόσο σε "εκτός αντικειμένου" λεπτομέρειες για να πρέπει να διδάξω σωστά το δικό μου αντικείμενο..
Μου φαίνεται πολύ ελκυστικότερη η άποψη που διατυπώνει ο Παναγιώτης (και η κοινή λογική) ότι, σε απλά ελληνικά, ακέραιο μέρος είναι το ... ακέραιο ... μέρος. Αν ένα κτίριο έχει πράσινο μέρος και κόκκινο μέρος, δεν υπάρχει αμφιβολία για το ποιό είναι το ένα και ποιό το άλλο. Τώρα που έχουμε ένα πραγματικό αριθμό με ακέραιο μέρος και δεκαδικό μέρος συζητάμε για ώρες

Όμως η παρατήρηση του Γιώργου και ο συλλογισμός του Σέργιου δε σηκώνουν πολλές ... αντιρρήσεις.
Όντως
το βιβλίο μας καθορίζει οτι η ΓΛΩΣΣΑ υλοποιεί τις συναρτήσεις που ... είναι γνωστές από τα μαθηματικά και, όντως τα μαθηματικά ορίζουν το ακέραιο μέρος όπως παρουσίασε ο Σέργιος.
Επομένως, μάλλον τελικά καλούμαστε να διδάξουμε κάτι που οι μαθητές θα έπρεπε να ξέρουν από τα μαθηματικά αλλά κανείς τους δε γνωρίζει
Εξ' άλλου, και από ...γραφικής άποψης καταλαβαίνει κανείς ότι ο συμβολισμός του ακέραιου μέρους εμπεριέχει τους συμβολισμούς τόσο του floor όσο και του ceiling. δε μπορώ εδώ να κάνω τα συμβολάκια, αλλά όλοι θα έχετε προσέξει ότι το Α_Μ παριστάνεται με αγκύλες [], το floor με αγκύλη που έχει τακουνάκι μόνο κάτω (floor γαρ) και το ceiling με αγκύλη που έχει τακουνάκια μόνο πάνω (ceiling γαρ). Νά' ναι άρα σημαδιακό;; μήπως τελικά κάτι προσπαθεί να μας πει ο ίδιο ο συμβολισμός;;; ότι άλλοτε (σε θετικούς) το Α_Μ λειτουργεί ως floor και άλλοτε (σε αρνητικούς) ως ceiling;
Να είναι άραγε σύμπτωση ότι η Α_Μ και οι DIV / MOD ορίζονται στην ίδια σελίδα; Σε προηγούμενη ... συζήτηση είχαν εκφραστεί παρόμοιες "ανησυχίες" για τη λειτουργία των DIV / MOD με αρνητικούς αριθμούς. Τελικά νομίζω ότι η εξήγηση ήταν πολύ απλή, στοιχειωδώς μαθηματική:
Αν δούμε το a div b ως Α_Μ(α/β) προκύπτει τελικά ο ορισμός που είχε τεκμηριώσει σε παλαιότερο σχετικό post ο Σέργιος, αφού:
-7 div 4 = A_M(-7/4) = A_M(-1.75) = -2
Surprise
