Αποστολέας Θέμα: ΛΙΓΗ ΒΟΗΘΕΙΑ!!!  (Αναγνώστηκε 1688 φορές)

XRISTINAKII

  • Οπαδός
  • **
  • Μηνύματα: 18
ΛΙΓΗ ΒΟΗΘΕΙΑ!!!
« στις: 28 Σεπ 2010, 05:30:41 μμ »
Το 1965 ο, συνιδρυτής της Intel, Gordon Moore διατύπωσε τον γνωστό σε όλους πια «νόμο του Moore» σύμφωνα με τον οποίο η χωρητικότητα των επεξεργαστών σε transistors (συνεπώς και η ταχύτητά τους) διπλασιάζεται κάθε 18 μήνες. Να γίνει αλγόριθμος που θα υπολογίζει και θα εμφανίζει τον αριθμό των transistors που θα περιέχει ένας επεξεργαστής σε 6 χρόνια από τώρα, αν ο σημερινός έχει 2000000000 (2 δισεκατομμύρια).

Μπορεί κάποιος να με βοηθήσει για την λύση της??

petrosp13

  • Ομάδα Νέου Λυκείου
  • *
  • Μηνύματα: 2225
Απ: ΛΙΓΗ ΒΟΗΘΕΙΑ!!!
« Απάντηση #1 στις: 28 Σεπ 2010, 05:56:12 μμ »
Το πρόβλημα θα είναι καλό να λυθεί με χρήση επανάληψης και όχι ακολουθίας απλά

6 χρόνια = 72 μήνες
Άρα, θα υπάρξουν συνολικά 4 διπλασιασμοί

Άρα, οι 2 λύσεις είναι οι εξής:

Αλγόριθμος Transistors
t <-- 2*10^9
t <-- 2*t
t <-- 2*t
t <-- 2*t
t <-- 2*t
Εμφάνισε t
Τέλος Transistors

Αλγόριθμος Transistors
t <-- 2*10^9

Για i από 1 μέχρι 4
t <-- 2*t
Τέλος_Επανάληψης

Εμφάνισε t
Τέλος Transistors

(Αν και θα έπρεπε να μας δώσεις κάποιες σκέψεις κι εσύ πριν σου δοθεί η λύση)
Παπαδόπουλος Πέτρος
Καθηγητής Πληροφορικής

XRISTINAKII

  • Οπαδός
  • **
  • Μηνύματα: 18
Απ: ΛΙΓΗ ΒΟΗΘΕΙΑ!!!
« Απάντηση #2 στις: 29 Σεπ 2010, 12:33:56 πμ »
Σας ευχαριστω πολλυ για την βοηθεια σας αλλα ξερετε τι δεν καταλαβαινω???
t <-- 2*10^9
t1 <-- 2*t
t2 <-- 2*t
t3 <-- 2*t
t4<-- 2*t
Εμφάνισε t4

ετσι δεν θα ηταν καλυτερα ωστε να μου εμφανιζει τον αριθμό των transistors σε 6 χρόνια???ειναι λαθος?
« Τελευταία τροποποίηση: 29 Σεπ 2010, 04:40:21 μμ από XRISTINAKII »

Νίκος Αδαμόπουλος

  • Γενικός διαχειριστής
  • *****
  • Μηνύματα: 2787
  • Πύργος Ηλείας
Απ: ΛΙΓΗ ΒΟΗΘΕΙΑ!!!
« Απάντηση #3 στις: 29 Σεπ 2010, 11:35:51 μμ »
Σας ευχαριστω πολλυ για την βοηθεια σας αλλα ξερετε τι δεν καταλαβαινω???
t <-- 2*10^9
t1 <-- 2*t
t2 <-- 2*t
t3 <-- 2*t
t4<-- 2*t
Εμφάνισε t4

ετσι δεν θα ηταν καλυτερα ωστε να μου εμφανιζει τον αριθμό των transistors σε 6 χρόνια???ειναι λαθος?

Εκτέλεσε τον αλγόριθμό σου βήμα προς βήμα για να δεις τι κάνει.
Χρησιμοποιείς 5 διαφορετικές μεταβλητές: t, t1, t2, t3, t4.
Τα t1, t2, t3 και t4 θα είναι όλα ίσα μεταξύ τους δηλαδή ίσα με 2*t

dipa57

  • Βετεράνος
  • ****
  • Μηνύματα: 56
  • Its Only Rock'n'Roll, But I Like it ...
Απ: ΛΙΓΗ ΒΟΗΘΕΙΑ!!!
« Απάντηση #4 στις: 30 Σεπ 2010, 02:24:25 μμ »
Σας ευχαριστω πολλυ για την βοηθεια σας αλλα ξερετε τι δεν καταλαβαινω???
t <-- 2*10^9
t1 <-- 2*t
t2 <-- 2*t
t3 <-- 2*t
t4<-- 2*t
Εμφάνισε t4

ετσι δεν θα ηταν καλυτερα ωστε να μου εμφανιζει τον αριθμό των transistors σε 6 χρόνια???ειναι λαθος?

Για δοκίμασε αυτό:

t <-- 2*10^9
t1 <-- 2*t
t2 <-- 2*t1
t3 <-- 2*t2
t4 <-- 2*t3
Εμφάνισε t4
Δημήτρης Παπακωνσταντίνου
1110010100 1110110111 1110111100 1110101110 1111000100 1111000001 1110110111 1111000010

gpapargi

  • Γενικός διαχειριστής
  • *****
  • Μηνύματα: 2452
  • I 'm not young enough to know everything
Απ: ΛΙΓΗ ΒΟΗΘΕΙΑ!!!
« Απάντηση #5 στις: 01 Οκτ 2010, 08:34:18 πμ »
Γιατί δεν το πας αλγεβρικά;

Αρχικά έχεις 2*10^9.
Σε 18 μήνες έχεις 2 (= 2^1) φορές το 2*10^9.
Σε άλλους 18 μήνες 4 (= 2^2) φορές το 2*10^9.
Σε ν 18μηνα έχεις 2^ν φορές το  2*10^9
Όπου ν το πλήθος των δεκαοχτάμηνων.

Άρα ο γενικός τύπος είναι 2^ν * 2*10^9. Το ν βρίσκεται με διαίρεση της χρονικής στιγμής που θέλουμε το πλήθος με τους 18μήνες (αρκεί να μιλάμε στην ίδια μονάδα μέτρησης δηλαδή χρόνια ή μήνες).

Βασικά αυτό που ζητάς είναι ο γενικός όρος γεωμετρικής προόδου με πρώτο όρο 2*10^9 και λόγο 2.