Γενικά > Επιστημονικά Θέματα

Μηδέν στη μηδενική

(1/6) > >>

gbougioukas:
Έγραψα ένα άρθρο στο μπλόγκ μου σχετικά. Θα με ενδιέφερε η γνώμη σας τόσο όσον αφορά το άρθρο, όσο και για το θέμα γενικότερα.

Γενικά, θεωρώ ότι δεν υπάρχει τίποτα στα μαθηματικά (τουλάχιστον μέχρι τώρα) που να απαγορεύει τον ορισμό 00=1. Αντίθετα, όλα τον υπαγορεύουν!

gpapargi:
Για να συμφωνήσω με ένα τέτοιο ορισμό  θα ήθελα προσεγγίζοντας το 0^0 με συναρτήσεις να κάνει 1 και όχι 0. Δηλαδή αν πάρω 2 συναρτήσεις f και g που τείνουν και οι δυο στο 0, όταν το x τείνει σε κάποιο x0, θα ήθελα αυτό να κάνει 1 και όχι 0. Αλλιώς δε θα μου άρεσε ένας τέτοιος ορισμός.
Αν πάρω f(x)=e^(-1/x^4) και g(x)=x^2 και βρω το όριο καθώς το x τείνει στο 0 τότε και η f και η g τείνουν στο 0. Αλλά η f(x)^g(x) τείνει το 0 και όχι στο 1 (εκτός αν μου ξέφυγε κάτι). Άρα δε συμφωνώ.

gbougioukas:

--- Παράθεση από: gpapargi στις 14 Μαρ 2017, 10:59:31 πμ ---Για να συμφωνήσω με ένα τέτοιο ορισμό  θα ήθελα προσεγγίζοντας το 0^0 με συναρτήσεις να κάνει 1 και όχι 0. Δηλαδή αν πάρω 2 συναρτήσεις f και g που τείνουν και οι δυο στο 0, όταν το x τείνει σε κάποιο x0, θα ήθελα αυτό να κάνει 1 και όχι 0. Αλλιώς δε θα μου άρεσε ένας τέτοιος ορισμός.
Αν πάρω f(x)=e^(-1/x^4) και g(x)=x^2 και βρω το όριο καθώς το x τείνει στο 0 τότε και η f και η g τείνουν στο 0. Αλλά η f(x)^g(x) τείνει το 0 και όχι στο 1 (εκτός αν μου ξέφυγε κάτι). Άρα δε συμφωνώ.

--- Τέλος παράθεσης ---

Το "00" είναι δύναμη με βάση την πραγματική σταθερή 0 και εκθέτη την πραγματική σταθερή 0, και όχι το όριο μιας δύναμης με βάση μια συνάρτηση του x και εκθέτη μια συνάρτηση του x, των οποίων το όριο είναι το 0 καθώς το x τείνει σε κάποιο x0. Αυτή η εξίσωση που κάνεις (όχι μόνο εσύ δηλαδή) σημαίνει το παρακάτω (το οποίο ΔΕΝ ισχύει (γενικά), είτε ορίσεις 00 = 1, είτε θεωρήσεις ότι δεν ορίζεται - πρόσεξε ότι με βάση την υπόθεση που κάναμε ότι το όριο των f(x), g(x) είναι το 0, το δεύτερο μέλος της ισότητας είναι δύναμη με βάση και εκθέτη την πραγματική σταθερή 0):



Το "00" που εννοείς είναι μια μετα-μαθηματική ονομασία την οποία μπερδεύεις μετά με συντακτικά αντικείμενα. Είναι σαν ονομάζεις την "απροσδιόριστη μορφή 00" ας πουμε "απροσδιόριστη μορφή 5" (γιατί είναι η πέμπτη πχ σε μια λίστα απροσδιόριστων μορφών) και να έρχεσαι μετά και να λες ότι δεν ορίζεται η πραγματική σταθερή 5 !
 

gpapargi:
Δεν είπα πουθενά ότι το 0^0 είναι το όριο της f(x)^g(x) όταν η κάθε μια τείνει στο 0.  Το 0^0 δεν έχει νόημα με βάση τον ορισμό της δύναμης. Αν θέλουμε να έχει νόημα θα πρέπει να δώσουμε κάποιο ορισμό. Τι είναι αυτό που θα μας κάνει να το ορίσουμε σαν 1 ή 0 ή 2 ή οτιδήποτε; Προφανώς το να μη μας δημιουργεί κάποιο πρόβλημα αλλού. Θέλουμε να κάνουμε μια γενίκευση του ορισμού. Αυτό που είπα είναι ότι θα με χάλαγε ένας ορισμός 0^0=1 αν εγώ μπορούσα να βρω f,g που να τείνουν στο 0 και το f(x)^g(x) να τείνει στο 0.
Να το πω αλλιώς. Έστω η συνάρτηση h(x)=f(x)^g(x) όπου f και g οι συναρτήσεις που όρισα στο προηγούμενο μήνυμά μου. Η συνάρτηση h ορίζεται παντού εκτός από το 0. Θέλω  να την ορίσω και στο 0, να πω δηλαδή πόσο κάνει το h(0).
Ποια θα ήταν η λογική κίνηση; Να δώσω σαν τιμή στο 0 την τιμή του ορίου ώστε να έχω μια συνεχή συνάρτηση. Μπορώ αν θέλω να δώσω οτιδήποτε πχ h(0)=1000 αλλά δε θα είχα συνεχή συνάρτηση. Η λογική κίνηση είναι να δώσω σαν τιμή την τιμή του ορίου. Ορίζω λοιπόν h(0)=0 και «βουλώνω την τρύπα» στη γραφική παράσταση. Αν δε θέλω δεν την ορίζω στο 0. Δεν έχω καμιά υποχρέωση να το κάνω. Αλλά αν θέλω να την ορίσω θα τις έδινα την τιμή του ορίου για να δένει με τα υπόλοιπα.
Πίσω στο 0^0. Αν για κάθε f,g που τείνουν στο 0 έχω και το f(x)^g(x) να τείνει στο 1 τότε δε θα είχα πρόβλημα να ορίσω ότι 0^0 = 1. Ομοίως αν για κάθε f,g που τείνουν στο 0 η f(x)^g(x) τείνει πάντα στο 0, δε θα είχα πρόβλημα να θέσω 0^0=0. Αλλά αν άλλοτε το όριο είναι 0 και άλλοτε είναι 1, εγώ προσωπικά δε θέλω να ορίσω το 0^0 ούτε σαν 0 ούτε σαν 1.

gbougioukas:
@gpapargi

Όπως σωστά είπες...οι ορισμοί δεν πρέπει να δημιουργούν προβλήματα αλλού. Ωστόσο, δεν ανέφερες κάποιο συγκεκριμένο πρόβλημα που δημιουργεί ο ορισμός 00=1, εκτός από το ότι δεν "το θέλεις προσωπικά" ή "σε χαλάει". Δεν αμφιβάλλω ότι πρόκειται περί αυστηρά προσωπικής θέσης, μιας και δεν το γράφει πουθενά ότι ορίζουμε τις δυνάμεις πραγματικών σταθερών με βάση... την συνέχεια των συνάρτήσεων. Γεγονός είναι ότι ο ορισμός 00=1 δεν δημιουργεί κάποιο τουλάχιστον γνωστό πρόβλημα, δηλαδή κάποια αντίφαση, όσον αφορά συγκεκριμένα την συνέχεια των συναρτήσεων ή και την ανάλυση γενικότερα - πέρα από τις όποιες προσωπικές αρέσκειες ή δυσαρέσκειες. Αντίθετα, ο μη-ορισμός δημιουργεί ένα πλήθος εξαιρέσεων συγκεκριμένα στην ανάλυση (άσε κατά μέρος τα μαθηματικά γενικότερα - αλήθεια τι γίνεται με το διωνυμικό θεώρημα;) χωρίς να υπάρχει κανένας απολύτως λόγος. Δες για παράδειγμα την (τζάμπα) εξαίρεση του n=1 από τον κανόνα παραγώγισης (xn)' = nxn-1 στα μαθηματικά προσανατολισμού Γ' ΓΕΛ. Αν ίσχυε ο ορισμός 00=1, θα είχαμε  (x1) = 1x1-1=x0=1, όπως έχουμε και χωρίς τον ορισμό 00=1 και χωρίς να χρειάζεται να δώσουμε το ειδικό θεώρημα (x)'=1. Αν τα μαθηματικά λειτουργούσαν έτσι γενικότερα ("επειδή έτσι μ' αρέσει"), ο Wiles ακόμα εξαιρέσεις θα έγραφε. Ευτυχώς, δεν λειτουργούν έτσι.

Πλοήγηση

[0] Λίστα μηνυμάτων

[#] Επόμενη σελίδα

Μετάβαση στην πλήρη έκδοση