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1. Introduction

Because of the desirable properties of structured flow diagrams,
the process of converting an unstructured flow diagram to an
equivalent structured one has attracted the attention of several
workers.

The three basic constituents of structured flow diagrams,
known as base diagrams, are simple sequence, selection
(if—then—else) and the while loop. Base diagrams can be
nested to form complex flow diagrams. A flow diagram which
consists entirely of a nest of base diagrams will here be referred
to as structured, whereas one which does not will be referred
to as unstructured. (Three other constructs are sometimes also
considered basic elements of structured flow diagrams, viz. the
until loop, the case construct and the loop—while—repeat
construct.)

The intention behind designing a method to structure flow
diagrams automatically is not so much to use it for improving
unstructured flow diagrams per se, as to prove that any
algorithm can be expressed in a reasonable structured form.
However, since some workers involved in automatic program-
ming (Cheatham and Wegbreit, 1972) are looking at the prob-
lem of rearranging a program so as to improve it, the tech-
niques for structuring flow diagrams may not go amiss.

In a previous paper (Williams, 1976) unstructuredness in
flow diagrams was shown to be due to the presence of one or
more of the following:

(a) abnormal selection path

(b) loop with multiple exit points

(c) loop with multiple entry points

(d) overlapping loops

(e) parallel loops.

These forms are illustrated in Fig. 1. It is necessary and suf-
ficient for a general structuring method to be able to eliminate
them from any flow diagram.

Several workers have put forward methods for converting
unstructured flow diagrams to structured form (Béhm and
Jacopini, 1966; Ashcroft and Manna, 1972; Wulf, 1972).
A method is described below which is both general and
sufficiently well-defined to be performed automatically by
computer. It has certain advantages over the other methods
mentioned, which should become apparent in the final section
where the various methods are compared.

2. Overview of method

An unstructured flow diagram is converted to structured form
by systematic structuring of the first three of the forms shown
in Fig. 1, viz:

(a) abnormal selection paths

(b) loops with multiple exit points

(¢) loops with multiple entry points.

The general forms of multiple exit loops and multiple entry
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loops are shown in Fig. 2. In each case, H is the head of the
loop, R its range and K the back-branch leading from the end
of the range to the head. x;, x,, . . . , X, (m = 2) are exits
leading to points X,, X5, . .., X,, outside the loop. Similarly,
€y, €1, - - . s e, (n = 1) are entries leading from points

(b)

v_(g))

Fig. 1 The five basic structures which cause unstructuredness in flow
diagrams
(a) Abnormal selection path
(b) Loop with multiple exit points
(c¢) Loop with multiple entry points
(d) Overlapping loops
(e) Paraliel loops
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Fig. 2 The general forms of loops
(a) Loop with multiple exit points
(b) Loop with multiple entry points
@ (b)

Fig. 3 (a) The overlapping loops in Fig. 1(d) drawn as nested
multiple exit loops
(b) The single multiple exit loop corresponding to the parallel
loops in Fig. 1(e)

E,, E,, ..., E,outside the loop to points within it. All entries
except e, are termed abnormal, and R consists of every box in
R which can be reached from an abnormal entry without
branching back to H.

The method owes its generality to the fact that overlapping
loops can be interpreted as nested multiple exit loops, and
parallel loops can easily be converted to single multiple exit
loops. This is illustrated by Figs. 3(a) and 3(b), which show the
overlapping and parallel loops in Figs. 1(4) and 1(e), respect-
ively, redrawn as multiple exit loops with heads, ranges, back-
branches and exits clearly shown. The actual boxes of the
overlapping loops remain unchanged, and the only change
to the parallel loops is that both back-branches have been
connected to an additional circle created at the end of the
range, which in turn has been connected to the loop head by
a single back-branch. This treatment of overlapping and
parallel loops is certainly artificial, but has the advantage
that it allows loops to be considered individually and virtually
independently.

In brief outline, the method is as follows:

(a) replace all ‘STOP’ boxes by a single one, so the flow
diagram will have only one exit point

(b) insert a circle at each junction point so that circles are the
only flow diagram elements having more than one arrow
leading to them

(¢) identify each loop, determining its head, range, exits and
entries
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(b)

Fig. 4 (a) The single exit while loop formed by the removal of
multiple exits from the loop shown in Fig. 2(a)
(b) The structured while loop formed by the removal of
multiple entries from the loop shown in Fig. 2(b)

(d) convert each unstructured loop to structured form by
eliminating multiple exits and entries

(e) eliminate abnormal selection paths using the well-known
method of duplication or node-splitting

(f) simplify the resultant structured flow diagram if necessary.

The first two steps are merely preliminary ones, and require
no further explanation; nor does node-splitting, which is the
accepted technique for eliminating abnormal selection paths.
The other steps are considered in detail below. They have been
split into several substeps for ease of description, some of
which may be combined in practice.

3. Identification of loops

To facilitate the systematic conversion of loops to structured
form, it is necessary to identify the heads, ranges, exits and
entries of each loop in the flow diagram. Although this can
often be done very easily by inspection, the algorithm for
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performing it automatically is by no means trivial. The follow-
ing is an outline of it:

(a) find the heads of all loops and convert parallel loops to
single multiple exit loops. A procedure for doing this is
given in Appendix 1. It is based on the fact that a loop head
is a circle having a path leading from it which eventually
returns to it, without passing through the head of an outer
loop

(b) assign level numbers to all loop heads in such a way that
heads of inner loops have higher level numbers than heads
of outer loops. A procedure for doing this is given in
Appendix |

(c) determine the range of each loop and mark every box
with an indication of the innermost loop to which it
belongs. This can be done using a procedure given in
Appendix |

(d) identify all exits from and entries to each loop. An exit
from a loop is any branch leading from a box within the
loop to one outside it. Similarly, an entry to a loop is any
branch leading from a box outside the loop to one within
it. All loop exits and entries can therefore be identified
by examining each branch in the flow diagram once.

4. Structuring of loops
Once all loops have been identified, the following algorithm
can be used to structure them:

(a) select one of the most deeply nested loops with abnormal
exits and/or abnormal entries. All multiple exits from a
loop are abnormal, and a single exit which is not at the top
of the range is considered abnormal as well, because, in
Section 1, the while loop was assumed to be the only form
of loop allowed in structured flow diagrams

(b) if the loop has abnormal exits, then, ignoring possible
abnormal entries, it has the form shown in Fig. 2(a)
(except that it might have only one exit, which is not at
the top of the range). Choose a unique Boolean variable B
and distinct integers i, i,, . . - , i, (one for each exit), and
convert the loop to the single exit while loop shown in
Fig. 4(a). A box setting B true must be inserted before
each entry (normal or abnormal) to the loop. C is a case
variable which may be used for all loops

(c

N

if the loop has multiple entries, then, since any possible
abnormal exits have already been eliminated, it has
precisely the form shown in Fig. 2(b), with the exit at the
top of the range. (If step (b) is applied to the loop, each E;
will be a box setting the unique Boolean variable true,
and the range R will be the new range R’ shown in Fig. 4(a).)
Convert it to the structured while loop shown in Fig. 4(b)
by duplicating all those boxes in R which can be reached
from the abnormal entries (i.e. Rg)

(d) if any unstructured loops remain, repeat this entire process.

5. Simplification

Although structured, loops of the form shown in Fig. 4(a) are
often very clumsy because of the decision boxes testing the
case variable at their exit points. These will have been converted
to structured selections by node-splitting, and so will have the
form shown in Fig. 5(a). If it makes the loop any simpler,
each selection path may be incorporated at the appropriate
point in the loop’s range, as shown in Fig. 5(b). The case
variable is no longer required.

This process will not always produce simpler loops, and so
should be applied with discretion. Note also that it cannot
be applied at all until the flow diagram has been completely
structured.

Volume 21 Number 2

Downl oaded from https://acadeni c. oup.confconjnl/article-abstract/21/2/161/ 477570

by guest

on 16 June 2018

Fig. 5 (a) The selection elements testing the case variable on exit
from a loop of the form shown in Fig. 4(a)
(b) The loop with the selection paths incorporated in its range
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Fig. 6 (a) Flow diagram containing loop with multiple exit and
multiple entry points
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(b) Equivalent structured form of Fig. 6(a), obtained using
the current method
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Fig. 7 (a) Flow diagram containing overlapping loops
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(b) Equivalent structured form of Fig. 7(a), obtained using the
current method
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(c) Equivalent structured form of Fig. 6(a), obtained using
Ashcroft and Manna’s method
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6. Comparison of methods

The method described above and the various other methods
mentioned in Section 1 will now be compared by considering
their effects on the four forms of unstructured loop shown
in Figs. 1(b)-(¢). All methods use node-splitting to handle
abnormal selection paths (Fig. 1(a)), which are therefore of
little interest.
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A loop with both multiple exits and multiple entries is shown
in Fig. 6(a), and the result of applying the method described
above to it, in Fig. 6(b). Ashcroft and Manna’s method (1972)

A
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Fig. 8 (a) Flow diagram containing parallel loops (Mullins et al)
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(b) Equivalent structured form of Fig. 8(a), obtained using
the current method
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can also handle this loop, converting it to the double loop
drawn in Fig. 6(c).

The other methods do not cater for multiple entry loops at
all and so are not completely general. They do handle multiple
exit loops, however. Bhm and Jacopini’s method (1966) has
much the same effect on them as the current method, whereas
the effect of Wulf’s method is similar to that of the current
method without the simplification step.

Fig. 7(a) is an example of overlapping loops. The current
method converts it to the nested loops shown in Fig. 7(b).
Ashcroft and Manna’s method can also handle this case,
though in a slightly different way, but the other methods do
not seem able to do so.

Finally, consider the parallel loops drawn in Fig. 8(a) (Mullins
et al., 1974). The equivalent structured form produced by the
current method is shown in Fig. 8(b). Both Ashcroft and
Manna’s and Bohm and Jacopini’s methods produce similar
results. Wulf’s method, on the other hand, converts the parallel
loops to the while loop shown in Fig. 8(c), which is very similar
to the flow diagram produced by the current method if no
simplification is performed.

7. Conclusion
Various methods for converting unstructured flow diagrams
to equivalent structured ones have been compared in the light
of the five structures which cause unstructuredness and a
general conversion method, capable of being performed auto-
matically, has been outlined. A computer program which
restructures flow diagrams, based on this technique, has been
written and has been applied successfully to a number of
simple examples.

Of course, mechanical restructuring of this type does not

P—true
Qetrve

P-failse
Q-false

(c¢) Equivalent structured form of Fig. 8(a), obtained using
Waulf’s method
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always produce the most efficient or most pleasing solution,
since it does not take account of information contained within
the flow diagram boxes to reduce the number of Boolean
variables required and simplify the equivalent structured flow
diagram. This is a much more difficult problem, which in
general has not been solved.
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Appendix 1

The procedures used to identify loops are given below in a
semi-formal notation. They operate on flow diagrams repre-
sented by linked lists of boxes. Each box has a number of
fields, including a CLASS field (specifying whether the box is a
process box, decision box, circle or terminal box), and a
LOOP field (to hold a pointer to the innermost loop to which
the box belongs). Each circle has four additional fields,
viz. a TYPE field (specifying the type of the circle, e.g. loop
head or selection circle), a LEVEL field (to contain the level
number assigned to the circle), a FLAG field and a PRO-
CESSED field (used by the procedure MARK to indicate
whether or not the circle has already been processed).

Three functions, NEXT, RIGHT and LEFT, are used by the
procedures for following paths within flow diagrams. NEXT
(BOX), where BOX is a process box or a circle, is the box
to which the arrow leaving BOX points; RIGHT(BOX) and
LEFT(BOX), where BOX is a two-way decision, are the boxes
to which the rightmost and leftmost arrows leaving BOX
point, respectively:

The procedure FINDHEADS, given below, does three
things:

(@) classifies circles as either loop heads or selection circles, and
marks them accordingly (by setting their TYPE fields)

(b) converts parallel loops to single multiple exit loops; and

(¢) duplicates circles where necessary so that each circle will
have precisely two arrows pointing to it.

It should be called with the actual parameter specifying the
first box of the flow diagram.

FINDHEADS (BOX) =
if BOX is a process box then
FINDHEADS (NEXT (BOX)) else
if BOX is a decision box then
FINDHEADS (RIGHT (BOX));
FINDHEADS (LEFT (BOX)) else*

if BOX is a circle then
if BOX is unmarked then
mark BOX “VISITED ONCE”;
FINDHEADS (NEXT BOX));
if BOX is still marked “VISITED ONCE”
then mark BOX “PROVISIONAL SELECTION
CIRCLE”
else mark BOX “LOOP HEAD?"” fi else
if BOX is marked “VISITED ONCE” then
mark BOX “PROVISIONAL LOOP HEAD?” else
if BOX is marked “PROVISIONAL SELECTION
CIRCLE” then

*These may be performed in the reverse order, i.e.
... FINDHEADS (LEFT (BOX));
FINDHEADS (RIGHT (BOX)) . ..
in which case the order must be reversed at the relevant points in
all the other procedures as well. The effect produced, though
equivalent, may be slightly different.
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mark BOX “SELECTION CIRCLE” else

if BOX is marked “PROVISIONAL LOOP HEAD” then
CONVERT PARALLEL LOOP else

if BOX is marked “SELECTION CIRCLE” then
DUPLICATE SELECTION CIRCLE else

if BOX is marked “LOOP HEAD” then
CREATE SELECTION CIRCLE fifififififififi fi

CONVERT PARALLEL LOOP is called when a circle is
encountered which has two back-branches leading to it
(i.e. which is the head of parallel loops). It converts the parallel
loops to a single multiple exit loop as described in Section 2.
DUPLICATE SELECTION CIRCLE or CREATE SELEC-
TION CIRCLE is invoked when a circle is encountered which
has too many arrows (other than back-branches) leading
to it, to create a new selection circle and thereby reduce the
number of arrows leading to the original circle.

The procedure ASSIGNLEVELS, given below, assigns level
numbers to all circles in such a way that if a path (not including
the back-branch of a loop) leads from one circle to another,
then the first will have a lower level number than the second.
As a result, in the case of nested loops, the head of the inner
loop will always have a higher level number than the head
of the outer loop. The level numbers assigned to loop heads
can thus be used to determine the way in which loops are
nested. Those assigned to selection circles, on the other hand,
help to perform node-splitting automatically.

When ASSIGNLEVELS is called, the first actual parameter
should specify the first box of the flow diagram and the second
the level number to be given to the first circle encountered.

ASSIGNLEVELS (BOX, LEV) =
if BOX is a process box then
ASSIGNLEVELS (NEXT(BOX), LEV) else
if BOX is a decision box then
ASSIGNLEVELS (RIGHT(BOX), LEV);
ASSIGNLEVELS (LEFT(BOX), LEV) else
if BOX is a circle then
if BOX is an unflagged loop head then
BOX[LEVEL]«LEV;
flag BOX;
ASSIGNLEVELS (NEXT (BOX), LEV +1) else
if BOX is a flagged loop head then unflag BOX else
if BOX is an unflagged selection circle then
BOX[LEVEL]«LEV;
flag BOX else
if BOX is a flagged selection circle then
BOX[LEVEL]—~MAX(BOX[LEVEL], LEV);
unflag BOX;
ASSIGNLEVELS (NEXT(BOX), BOX{LEVEL]+1)
fififififififi

The procedure MARKRANGES, given below, marks the
ranges of all loops by placing, in the LOOP field of each box,
a pointer to the head of the innermost loop to which the box
belongs. It invokes the procedure MARK, also given, which
marks the range of a single loop, and the function POINTER-
TO, which returns a pointer to the box specified as its para-
meter. It should be called with the actual parameter specifying
the first box of the flow diagram.

MARKRANGES (BOX) =

if BOX is a process box then
MARKRANGES (NEXT(BOX)) else

if BOX is a decision box then
MARKRANGES (RIGHT(BOX));
MARKRANGES (LEFT(BOX)) else

if BOX is a circle then

if BOX is an unflagged loop head then
flag BOX;
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MARK(NEXT(BOX), POINTERTO(BOX));
MARKRANGES(NEXT(BOX)) else

if BOX is an unflagged selection circle then
flag BOX;
MARKRANGES (NEXT(BOX)) else

if BOX is flagged then unflag BOX fi fi fi fi fi fi

MARK(BOX,HPTR) =
if BOX is a process box then
MARK (NEXT(BOX), HPTR);
if NEXT(BOX)[LOOP] = HPTR then
BOX[LOOP] « HPTR fi else
if BOX is a decision box then
MARK (RIGHT(BOX), HPTR);
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Book reviews

Continued from page 160

is the ‘best’ book since subjectivity and experience of other methods
will bias not only myself but those who are already committed to a
particular approach to programming activity. And as the author
points out he does not claim infallibility and he recognises the
validity of other approaches.

Tausworthe writes easily and it does not take long to become
absorbed in what he writes. There are plenty of illustrations and
examples to explain further what he wants to put across. Only one
note jarred and that is in the earlier sections: on more than one
occasion he apologises for moving in a particular direction. Once he
gets into his stride, and assumes the reader has decided to go along
with him, he drops this mildly irritating posture.

For the ‘other camp’, that of students and research workers,
the book will be less satisfying. Anyone who simply wants a reason-
able methodology to apply in programming would be content to
read, mark, learn and inwardly digest. Anyone who wants Taus-
worthe to justify and prove what he writes will not be happy and
neither will anyone wanting the state-of-the-art briefing. They should
read Yeh'’s book instead. I fear that some will dismiss Tausworthe
also as ‘too pragmatic’.

D. R. A. CoaN (Manchester)

Simulation of Systems, Proceedings of the 8th AICA Congress,
Edited by L. Dekker, 1977; 1122 pages. (North-Holland,
$91.95)

The proceedings of the 8th AICA Congress takes the now traditional
ferm of preprints together with some short discussion notes and
(very valuable) corrections. Major sections of the proceedings cover:
System modelling; simulation tools; simulation of specific system,
together with examples of current research in the Netherlands
presented by demonstration.

Of the theoretical discussions, the paper by Spriet and
Vansteenkiste developing Walche functions is likely to be seminal;
these functions, the orthogonal binary functions well suvited to
digital realisation, have proved their worth in several fields now.

Volume 21 Number 2

Downl oaded from https://acadeni c. oup.confconjnl/article-abstract/21/2/161/ 477570

by guest

on 16 June 2018

It is interesting to note that they originate from a highly ‘academic’
and unpractical thesis in mathematics of the mid-thirties that had
to wait for the full development of the digital computer to see prac-
tical application. The adaption to the Laplace transform (for linear
systems) of the Fast Fourier transform (FFT) is neatly described
in a paper by Heinz Waller.

Section Two, simulation tools, has some useful discussion of
hybrid computers which will be a source of useful ideas and an
attack on defining simulation languages for a range of problems
either lying outside conventional engineering or (rather ambitious)
in the domain of ‘universal’ languages. Two other ‘in principle’
papers are worth mentioning here: the Polish paper (A. Szymanski)
giving a practical algorithm for a time optimal (Pontryagin) prob-
lem with random disturbances and an EAI practical realisation
(by Buli and Janac) of an integral equation solution method by
analogue computer.

The final section on specific topics is too wide to review in detail
but represents a valuable bringing together of practical realisation.
The foreword contains Dekker’s thoughts on simulation. In the
old days we spoke of analogue (or if American, of analog) computers
where now we speak of simulating systems. The virtues and vices
are still there; limitations in time and equipment require simplifica-
tions of the model. These simplifications would be desirable in their
own right almost certainly, as a necessity if the experimentation
on the model is to be usefully carried out. The art of simulation is no
less than the art of analogue programming, for all the availability
of ‘universal programming languages’ and ‘hybrid systems with
automatic patching’.

The end papers include a short index as well as the panel discus-
sions first on the independence of simulation as a separate discipline,
and then on the problem of the credibility of simulation (although
the Club of Rome simulations do not have reference here, they are a
prime example of the problem of convincing the outsider of
credibility).

The proceedings should be available to every technical university,
etc.

J. Lewins (London)
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