Algorithm E (Euclid’s algorithm). Given two positive integers m and n, find their
greatest common divisor, that is, the largest positive integer that evenly divides
both m and n.

Wy ORI

n
E1. [Find remainder.] Divide m by n and let r be the remainder. (We will have 0 =
r<n.)
E2. [Is it zero?] If r=0 tha algorithm terminates; n is the answer.
E3. [Reduce.] Set m « n, n — r, and go back to step E1. 1

So this is an algorithm. The modern meaning for algorithm is quite similar to
that of recipe, process, method, technique, procedure, routine, rigmarole, except
that the word “algorithm” connotes something just a little different. Besides merely
being a finite set of rules that gives a sequence of operations for solving a specific
type of problem, an algorithm has five important features:

1) Finiteness. An algorithm must always terminate after a finite number of
steps. Algorithm E satisfies this condition, because after step E1 the value of ris
less than n; so if r # 0, the value of n decreases the next time step E1 is
encountered. A decreasing sequence of positive integers must eventually
terminate, so step E1 is executed only a finite number of times for any given
original value of n. Note, however, that the number of steps can become
arbitrarily large; certain huge choices of m and n will cause step E1 to be
executed more than a million times.

(A procedure that has all of the characteristics of an algorithm except that it
possibly lacks finiteness may be called a computational method. Euclid originally
presented not only an algorithm for the greatest common divisor of numbers, but
also a very similar geometrical construction for the “areatest common measure” of
the lengths of two line segments; this is a computatidnal method that does not
terminate if the given lengths are incommensurable. Another example of a
nonterminating computational method is a reactive process, which continually
interacts with its environment.)

2) Definiteness. Each step of an algorithm must be precisely defined; the
actions to be carried out must be rigorously and unambiguously specified for each
case. The algorithms of this book will hopefully meet this criterion, but they are
specified ir “"¥~":nglish language, so there is a possibility that the reader might
not understand exactly what the author intended. To get around this difficulty,
formally defined programming languages or computer languages are designed for
specifying algorithms, in which every statement has a very definite meaning.
Many of the algorithms of ill?is book will be given both in English and in a
computer language. An expression of a computational method in a computer
language is called a program.

In Algorithm E, the criterion of definiteness as applied to step E1 means that
the reader is supposed to understand exactly what it means to divide m by n and
what the remainder is. In actual fact, there is no universal agreement about what
this means if m and n are not positive integers; what is the remainder of -8
divided by —=r? What is the remainder of 59/13 divided by zero? Therefore the
criterion of definiteness means we must make sure that the values of m and n are
always positive integers whenever step E1 is to be executed. This is initially true,
by hypothesis; and after step E1, ris a nonnegative integer that must be nonzero
if we get to step E3. So m and n are indeed positive integers as required.



3) Input. An algorithm has zero or more inputs: quantities that are given to it
initially before, the algorithm-oegins, or dynamically as the algorithm runs. These
inputs are taken from specified sets of objects. In Algorithm E, for example, there
are two inputs, namely m and n, both taken from the set of positive integers.

4) Output. An algorithm has one or more oufputs: quantities that have a
specified relation to the inputs. Algorithm E has one output, namely n in step E2,
the greatest common divisor of the two inputs.

(We can easily prove that this number is indeed the greatest common
divisor, as follows. After step E1, we have

m=qn+r,

for some integer q. If r= 0, then m is a multiple of n, and clearly in such a case n
is the greatest common divisor of m and n. If r # 0, note that any number that
divides both m and n must divide m - gn = r, and any number that divides both n
and r must divide gn + r = m; so the set of common divisors of m and n is the
same as the set of common divisors of n and r. In particular, the greatest common
divisor of m and n is the same as the greatest common divisor of n and r.
Therefore step E3 does not change the answer to the original problem.)

5) Effectiveness. An algorithm is also generally expected to be effective, in
the sense that its operations must all be sufficiently basic that they can in
principle be done exactly and in a finite length of time by someone using pencil
and paper. Algorithm E uses only ‘he operations of dividing one positive integer
by another, testing if an integer is zero, and setting the value of one variable
equal to the value of another. These operations are effective, because integers
can be represented on paper in a finite manner, and because there is at least one
method (the “division algorithm”) for dividing one by another. But the same
operations would not be effective if the values involved were arbitrary real
numbers specified by an infinite decimal expansion, nor if the values were the
lengths of physical line segments (which cannot be specified exactly). Another
example of a noneffective step is, “If 4 is the largest integer n for which there is a
solution to the equation w' + x" + ¥ = 2" in positive integers w, x, y, and z, then
go to step E4." Such a statement would not be an effective operation until
someone successfully constructs an algorithm to determine whether 4 is or is not
the largest integer with the stated property.



We should remark that the finiteness restriction is not really strong enough
for practical use. A useful algorithm should require not only a finite number of
steps, but a very finite number, a reasonable number. For example, there is an
algorithm that determines whether or not the game of chess can always be won
by White if no mistakes are made (see exercise 2.2.3-28). That algorithm can
solve a problem of intense interest to thousands of people, yet it is a safe bet that
we will never in our lifetimes know the answer; the algorithm requires fantastically
large amounts of time for its execution, even though it is finite. See also Chapter
8 for a discussion of some finite numbers that are so large as to actually be
beyond comprehension.

In practice we not only want algorithms, we want algorithms that are good in
some loosely defined aesthetic sense. One criterion of goodness is the length of
time taken to perform the algorithm; this can be expressed in terms of the number
of times each step is executed. Other criteria are the adaptability of the algorithm
to different kinds of computers, its simplicity and elegance, etc.

Mnyn : The Art of Computer Programming: Volume 1:
Fundamental Algorithms



