Αποστολέας Θέμα: O υπολογισμος του π θεωρείται επιλύσιμο?  (Αναγνώστηκε 3195 φορές)

efi2

  • Νέος
  • *
  • Μηνύματα: 2
O υπολογισμος του π θεωρείται επιλύσιμο?
« στις: 25 Σεπ 2008, 05:04:04 μμ »
Ο υπολογισμος του π θεωρείται επιλύσιμο προβλημα?

Laertis

  • Γενικός διαχειριστής
  • *****
  • Μηνύματα: 1465
  • Δεν αντέχω την (συμ)-πίεσηηη .......
    • ΑΣΚΗΣΕΙΣ-ΘΕΜΑΤΑ ΑΕΠΠ
Απ: O υπολογισμος του π θεωρείται επιλύσιμο?
« Απάντηση #1 στις: 25 Σεπ 2008, 06:24:08 μμ »
Μόνο προσεγγιστικά
Νικολακάκης Γιώργος
Μηχανικός Η/Υ Συστημάτων
Καθηγητής Πληροφορικής
http://users.sch.gr/gnikola

stavrax

  • Ομάδα διαγωνισμάτων 2011
  • *
  • Μηνύματα: 35
Απ: O υπολογισμος του π θεωρείται επιλύσιμο?
« Απάντηση #2 στις: 25 Σεπ 2008, 09:02:16 μμ »
ανοικτό

alkisg

  • Τεχνικός / καθαρίστρια
  • *****
  • Μηνύματα: 4856
    • alkisg@im.sch.gr
    • Ο Διερμηνευτής της ΓΛΩΣΣΑΣ
Απ: O υπολογισμος του π θεωρείται επιλύσιμο?
« Απάντηση #3 στις: 25 Σεπ 2008, 10:27:27 μμ »
Για πεπερασμένο αριθμό δεκαδικών ψηφίων, είναι επιλύσιμο (έχουν υπολογιστεί τα 1 τρισεκατομμύριο πρώτα ψηφία του).

Για μη πεπερασμένο αριθμό ψηφίων, επειδή ο π είναι άρρητος, έχει άπειρα και μη επαναλαμβανόμενα δεκαδικά ψηφία, και επομένως δεν θα υπάρξει ποτέ υπολογιστής που να μπορεί να τον αποθηκεύσει στην πεπερασμένη RAM του. Ε, και προφανώς δεν θα μπορέσει να τον υπολογίσει ακριβώς. Και εκτός από τη RAM είναι και το θέμα της περατότητας των αλγορίθμων (ούτε καν άπειρες ΓΡΑΨΕ δεν μπορούμε να κάνουμε για να τυπώσουμε τα ψηφία του)... Άρα είναι αποδεδειγμένα άλυτο.

Για ανοικτά προβλήματα που υπάρχουν ακόμα σχετικά με τον αριθμό π, δείτε τη σχετική σελίδα της wikipedia: http://en.wikipedia.org/wiki/Pi

efi2

  • Νέος
  • *
  • Μηνύματα: 2
Απ: O υπολογισμος του π θεωρείται επιλύσιμο?
« Απάντηση #4 στις: 25 Σεπ 2008, 11:08:12 μμ »
Ευχαριστω για την αποσαφήνιση! ::)

gpapargi

  • Γενικός διαχειριστής
  • *****
  • Μηνύματα: 2448
  • I 'm not young enough to know everything
Απ: O υπολογισμος του π θεωρείται επιλύσιμο?
« Απάντηση #5 στις: 26 Σεπ 2008, 09:03:04 πμ »
2 λόγια που ξεφεύγουν κάπως από το θέμα αλλά είναι σχετικά και ελπίζω ενδιαφέροντα

Οι άρρητοι αριθμοί (δηλαδή αυτοί που δεν μπορούν να γραφτούν σαν κλάσμα 2 ακεραίων) χωρίζονται σε 2 μεγάλες κατηγορίες: τους αλγεβρικούς και τους υπερβατικούς.

Οι αλγεβρικοί είναι αυτοί για τους οποίους υπάρχει πολυωνυμική  εξίσωση με ρητούς συντελεστές που να τους έχει σα ρίζα, ενώ για τους υπερβατικούς δεν υπάρχει τέτοια εξίσωση.
Παράδειγμα άρρητου αλγεβρικού είναι η ρίζα του 2. Παράδειγμα άρρητου υπερβατικού είναι ο π.

Όλοι οι άρρητοι δεν μπορούν να παρασταθούν ακριβώς σε δεκαδική μορφή, χρειάζονται άπειρά δεκαδικά ψηφία μη επαναλαμβανόμενα. Οπότε ο ακριβής υπολογισμός τους είναι αδύνατος. Ούτε ο π αλλά ούτε και ο ρίζα 2 υπολογίζονται ακριβώς σε δεκαδική αναπαράσταση λόγω του ότι είναι άρρητοι.

Οι αλγεβρικοί ωστόσο μπορούν να κατασκευαστούν με κανόνα και διαβήτη. Αντίθετα οι υπερβατικοί δεν κατασκευάζονται. Ο π δεν κατασκευάζεται λοιπόν με κανόνα και διαβήτη λόγω της υπερβατικότητάς του. Αυτός είναι και ο λόγος για τον οποίο δεν τετραγωνίζεται και ο κύκλος με κανόνα και διαβήτη.

Οι υπερβατικοί αριθμοί είναι απείρως περισσότεροι από τους άρρητους αλγεβρικούς, και τους ρητούς μαζί (εδώ περιέχονται και οι ακέραιοι).

MichaelP

  • Θαμώνας
  • ***
  • Μηνύματα: 34
  • ...Εγώ τους τα μαθαίνω χωρίς Απο...Έως ....
Απ: O υπολογισμος του π θεωρείται επιλύσιμο?
« Απάντηση #6 στις: 17 Ιαν 2009, 07:30:35 μμ »
Είναι σαν να ρωτάτε αν ένας υπερβατικός μπορεί να υπολογιστεί...μέχρι το τελευταίο του ψηφίο, ενώ εξ' ορισμού δεν γίνεται.
Έτσι η εύρεση της διαδικασίας υπολογισμών των δεκαδικών του π είναι ένα επιλύσιμο πρόβλημα, σε αντιδιαστολή με την επίλυση του προβλήματος: Εύρεση του υπερβατικού π το οποίο προφανώς είναι άλυτο πρόβλημα.

Μ