Το Στέκι των Πληροφορικών

Γενικό Λύκειο => Γενικές εξετάσεις => Ανάπτυξη εφαρμογών σε προγραμματιστικό περιβάλλον => Εξετάσεις 2008-2009 => Μήνυμα ξεκίνησε από: tkon στις 27 Μάι 2009, 08:06:10 μμ

Τίτλος: ΘΕΜΑ Δ4
Αποστολή από: tkon στις 27 Μάι 2009, 08:06:10 μμ
ΓΙΑΤΙ ΤΟ -32,0  ΕΙΝΑΙ ΠΡΑΓΜΑΤΙΚΟΣ ΚΑΙ ΟΧΙ ΑΚΕΡΑΙΟΣ;
ΜΠΟΡΕΙ ΝΑ ΜΟΥ ΤΟ ΕΞΗΓΗΣΕΙ ΚΑΠΟΙΟΣ

ΑΠΑΝΤΗΘΗΚΕ ΑΠΟ ΠΟΛΛΟΥΣ ΜΑΘΗΤΕΣ ΑΚΕΡΑΙΟΣ, ΕΙΝΑΙ ΛΑΘΟΣ;
Τίτλος: Απ: ΘΕΜΑ Δ4
Αποστολή από: evry στις 27 Μάι 2009, 08:46:34 μμ

  Έχεις απόλυτο δίκιο. Φοβάμαι ότι το συγκεκριμένο ερώτημα θα αποδειχθεί ότι το έχουν οι καλοί κιόλας μαθητές στην πλειοψηφία τους ΑΚΕΡΑΙΑ. Κρίμα. Ευτυχώς έπιανε μόνο μια μονάδα. Δε λέω ότι είναι λάθος ή κάτι τέτοιο για να μην παρεξηγηθώ, αλλά είναι λίγο τραβηγμένο εννοιολογικά. Δηλαδή η κατανόηση που ζητάει είναι παραπάνω από το μάθημα

  Πάμε τώρα στην εξήγηση, έχεις τη διαίρεση α / β . Τι είναι το αποτέλεσμα? Θα μου πεις δεν ξέρω εξαρτάται από τα α, β. Ακριβώς επειδή η γλώσσα που κάνουμε πρέπει να ξέρει εξ'αρχής τι τύπου είναι αυτή η παράσταση δηλαδή σε χρόνο μεταγλώττισης τη θεωρεί πραγματικό. Έτσι έχουμε 6 / 3 = 2,0 και όχι 2
Η διαφορά έχει να κάνει με την αναπαράσταση στη μνήμη, άλλη μνήμη θέλεις για έναν ακέραιο και για άλλη για ένα πραγματικό. Σκέψου ότι μεταξύ 1 και 10 έχουμε 10 ακέραιους αλλά άπειρους πραγματικούς. Πως θα τους αναπαραστήσεις στον υπολογιστή?
Τίτλος: Απ: ΘΕΜΑ Δ4
Αποστολή από: pgrontas στις 27 Μάι 2009, 09:55:41 μμ
Έχεις ένα πρόγραμμα που τρέχει και βλέπεις ως αποτέλεσμα στην οθόνη το -32,0.
Σε τι τυπου μεταβλητή μπορεί να έχει αποθηκευθεί;
Τίτλος: Απ: ΘΕΜΑ Δ4
Αποστολή από: Νίκος Αδαμόπουλος στις 27 Μάι 2009, 10:11:34 μμ
Για τα δύο πρώτα θέματα κάποιες προβλέψεις:
....
Στο Δ.4 πολλοί μαθητές (και όχι μόνο) ίσως βάζουν α. (ακέραιο αντί πραγματικό)
....

Ήταν φως φανάρι πάντως από την αρχή (βλ. αρχική μου πρόβλεψη) ότι θα γίνουν λάθη στο θέμα αυτό.

Από ένα μικρό δείγμα μαθητών που πήρα, 100% από αυτούς έβαλαν ακέραιο!!! Καλοί μαθητές και μη...
Μερικοί είχαν βάλει αρχικά πραγματικό και μετά το άλλαξαν.... Μάλιστα την ώρα που μου το έλεγαν ήταν σίγουροι ότι αυτό είναι το σωστό και ότι έπραξαν ορθά ..... :(
Τίτλος: Απ: ΘΕΜΑ Δ4
Αποστολή από: michaeljohn στις 27 Μάι 2009, 10:39:04 μμ
Η ύπαρξη δεκαδικού ψηφίου , έστω και αν είναι 0,   σημαίνει πραγματικός αριθμός
Τίτλος: Απ: ΘΕΜΑ Δ4
Αποστολή από: evry στις 27 Μάι 2009, 10:47:02 μμ
  Δεν υπάρχει θέμα ορθότητας. Προφανώς και η σωστή απάντηση είναι ΠΡΑΓΜΑΤΙΚΟΣ για το -32,0. Δεν υπάρχει καμία αμφιβολία για αυτό. Το ερώτημα είναι το άλλο. Ένας μαθητής που και καλά διαβασμένος είναι και έχει κατανοήσει τα βασικά μπορεί να το βρει? έχει πιθανότητες? Φαίνεται αυτό κάπου στο βιβλίο? Γιατί σε αυτό το καταραμένο βιβλίο δεν είχαν ένα παράδειγμα του στυλ 35,00 ? θα φαινόταν ξεκάθαρα και θα έφερνε και τον καθηγητή σε δύσκολη θέση  ώστε να ψαχτεί και να το εξηγήσει.
Η ύπαρξη δεκαδικού ψηφίου , έστω και αν είναι 0,   σημαίνει πραγματικός αριθμός

     Το είπα από την αρχή ότι το θέμα είναι καθαρά προγραμματιστικό και πολλοί μαθητές θα το κάνουν λάθος. Επιστημονικά όμως είναι ολόσωστο. Και να σας πω και κάτι? Εμένα περισσότερο με ενοχλεί το θέμα θεωρίας με την κατανόηση παρά αυτό. Το θέμα με την κατανόηση είναι καθαρά υποκριτικό. Δηλαδή όσοι το γράψουν ξέρουν τι σημαίνει κατανόηση σε ένα πρόβλημα? Πιθανόν κάποιοι να απαντήσουν ναι. Και θα συμφωνήσω. Ξέρουν όπως και πέρυσι ήξεραν τι είναι η άπληστη μέθοδος και ο δυναμικός προγραμματισμός.
Παράθεση
Τώρα αν το βιβλίο έχει κάνει την πατάτα να λέει "όπως στα μαθηματικά", νομίζω το σωστό θα είναι να κοπεί το ερώτημα.
Τίτλος: Απ: ΘΕΜΑ Δ4
Αποστολή από: pgrontas στις 27 Μάι 2009, 11:09:28 μμ
   Εμένα περισσότερο με ενοχλεί το θέμα θεωρίας με την κατανόηση παρά αυτό. Το θέμα με την κατανόηση είναι καθαρά υποκριτικό. Δηλαδή όσοι το γράψουν ξέρουν τι σημαίνει κατανόηση σε ένα πρόβλημα? Πιθανόν κάποιοι να απαντήσουν ναι. Και θα συμφωνήσω. Ξέρουν όπως και πέρυσι ήξεραν τι είναι η άπληστη μέθοδος και ο δυναμικός προγραμματισμός.
Το φετινό ερώτημα παπαγαλίας ήταν καλύτερο από το περσινό, καθώς μέσω και του μαθήματος μας και των μαθηματικών και της φυσικής τα παιδιά έχουν βιώσει στο πετσί τους την κατανόηση προβλήματος. Πόσες φορές στην μαθητική τους καριέρα θα έχουν λύσει λάθος ένα πρόβλημα, λόγω του ό,τι το κατάλαβαν λάθος;;; Με αυτή την έννοια δεν είναι και τόσο παπαγαλία.
Αντίθετα πέρσι ήταν χειρότερα γιατί έγραφαν λέξεις χωρίς αντίκρυσμα.
Τίτλος: Απ: ΘΕΜΑ Δ4
Αποστολή από: mathiopoulosk στις 27 Μάι 2009, 11:17:29 μμ
Σε σχέση με το -32,0:
1. διαφωνώ με το , και είναι καλύτερα με . η υποδιαστολή
2. σίγουρα είναι πραγματικός, αφού έχει δεκαδικό μέρος, έστω και αν αυτό είναι μηδέν
3. ο πρακτικός μαθητής θα μπορούσε να σκεφτεί:
    α<--  -32.7
    β<--     0.7
    γ<--   α +β

    ή
    γ<--  -10.5 - 21.5   
   
    τι θα πρέπει να δηλωθεί το γ? Φυσικά πραγματικός!
    Ο μέσος όρος είναι πάντα πραγματικός. Αποκλείεται να έχει ΜΟ= 19.0? Φυσικά και δεν αποκλείεται.
 

Μαθιόπουλος Κωνσταντίνος
http://mathiopoulosk.dyndns.org

Τίτλος: Απ: ΘΕΜΑ Δ4
Αποστολή από: evry στις 27 Μάι 2009, 11:32:39 μμ
Ουσιαστικά δεν διαφωνούμε σε κάτι. Αυτό που σημειώνω εγώ είναι αν έτσι όπως τους έθεσαν το πρόβλημα φαινόταν ξεκάθαρα ή ήταν λογικό να υποθέσουν ότι το -32,0 είναι πραγματικός. Στα παραδείγματα που δίνεις φαίνεται. Στο συγκεκριμένο θέμα όχι τόσο ξεκάθαρα για έναν μαθητή. Γνώμη μου, ίσως να κάνω και λάθος αλλά φοβάμαι ότι η βαθμολόγηση θα δείξει πως όλοι θα χάσουν αυτό το θέμα. Ίσως είναι πολύ πιο προγραμματιστικό από ότι έπρεπε
Τίτλος: Απ: ΘΕΜΑ Δ4
Αποστολή από: Νίκος Αδαμόπουλος στις 27 Μάι 2009, 11:52:13 μμ
(... και ξέχασα το καλύτερο...)

Μαθητής που έκανε ολόσωστα το Θ4, που την πάτησε στο γνωστό σημείο στο Θ3 (κάτι μου λέει ότι το Θ3 θα έχει χειρότερα ποσοστά επιτυχίας από το Θ4!!!), ολόσωστα το Θ2, και που τον εκτίμησα γύρω στο 85-90 συνολικά, μου είπε το εξής: (περίπου ο διάλογος):

...
Κ. Και στο Δ τι έβαλες;  :)
Μ. Ακέραιοι (δεν πολυάκουσα τι μου είπε γιατί ήμουν σίγουρος ότι μου είπε το σωστό!)
Μ. Χαρακτήρας, χαρακτήρας...
Κ. Ναι.... Και στο 4;  :)
Μ. Τους έβαλα ακέραιους...
Κ. Λοιπόν το συγκεκριμένο πρέπει να το έχουν κάνει λάθος σχεδόν όλοι. Κανονικά όμως είναι πραγματικός...  :police:
Μ. Πραγματικοί;
Κ. Πραγματι-κός!
Μ. Δηλαδή επειδή ο πρώτος είναι αρνητικός δεν μπορεί να είναι ακέραιος; Δεν είναι όπως στα μαθηματικά; Δεν έχουμε αρνητικούς ακέραιους;
Κ. Προφανώς έχουμε...  :D
Κ. Αλλά αφού έχει και το κόμμα μηδέν (,0) θα πρέπει να τον θεωρήσουμε ως πραγματικό...
Μ. Το 0 δεν είναι ακέραιος;
Κ. .........  :D
Κ. .........
Κ. Κάτσε για να καταλάβω. Πες μου πάλι τι έβαλες στο 4...!  :-\
Μ. Είπα ακέραιος και ακέραιος, Ακέραιοι και οι δύο.
Κ. ......
Κ. Ρε συ τους πήρες σαν δύο αριθμούς;  :o
Μ. Το -32 είναι ακέραιος και το 0 είναι ακέραιος...
Κ. Ρε συ, ΕΝΑΣ είναι ο αριθμός. ΑΥΤΟ ΕΙΝΑΙ ΥΠΟΔΙΑΣΤΟΛΗ...!!!  :P
Μ. Όχι ρε γαμώτο! Δηλαδή και στο 1 που τους έβαλα ακέραιους....
Κ. Ακέραιους είπες;
Μ. ΝΑΙ...  :'(
Κ. Ένας είναι κι εκεί! Πραγματικός...  :-[
Μ. ....
----------------

1. 0,42
2. "ΨΕΥΔΗΣ"
3. "χ"
4. -32,0
5. ΑΛΗΘΗΣ
Τίτλος: Απ: ΘΕΜΑ Δ4
Αποστολή από: gpapargi στις 28 Μάι 2009, 09:01:28 πμ
Αυτό το θέμα είναι ένας θαυμάσιος λόγος για να γίνεται εργαστήριο στο Διερμηνευτή. Όποιος έχει γράψει και τρέξει μερικά προγράμματα θα βρεθεί σίγουρα αντιμέτωπος με αυτό το γεγονός.

Ας φτιάξει κάποιος πρόγραμμα στο Διερμηνευτή που να δέχεται με έλεγχο εισόδου έναν ακέραιο και να τον σπάει στα ψηφία του. Θα βρεθεί αντιμέτωπος με διάφορά ενδιαφέροντα και πολύ διδάκτικά πράγματα.
Τίτλος: ΘΕΜΑ 1Δ
Αποστολή από: tkon στις 28 Μάι 2009, 02:07:42 μμ
ΣΧΕΤΙΚΑ ΜΕ ΤΟ ΘΕΜΑ 1Δ
ΘΕΜΑ ΠΑΝ ΕΞΕΤΑΣΕΩΝ ΝΟΜΙΖΩ 2002 ΕΠΑΝΑΛΗΠΤΙΚΑ


ΝΑ ΑΠΟΔΕΙΞΕΤΕ ΟΤΙ Ο ΑΡΙΘΜΟΣ Χ ΕΙΝΑΙ ΑΚΕΡΑΙΟΣ Ή ΠΡΑΓΜΑΤΙΚΟΣ
ΑΠΑΝΤΗΣΗ
 ΑΝ (Χ- Α_Μ(Χ) = 0) ΤΟΤΕ
    ΓΡΑΨΕ 'Ο ΑΡΙΘΜΟΣ ΕΙΝΑΙ ΑΚΕΡΑΙΟΣ'
 ΑΛΛΙΩΣ
   ΓΡΑΨΕ ' Ο ΑΡΙΘΜΟΣ ΠΡΑΓΜΑΤΙΚΟΣ'
 ΤΕΛΟΣ_ΑΝ

ΣΤΟ ΘΕΜΑ ΤΟ ΔΙΚΟ ΜΑΣ
Χ<-- -32,0
Α_Μ(-32,0) = 32
Χ - Α_Μ(Χ) = 0
ΑΡΑ Ο Χ ΑΚΕΡΑΙΟΣ
ΘΑ ΤΡΕΛΑΘΟΥΜΕ!!!!!!!!!!!!!!!!
ΘΑ ΞΕΧΑΣΟΥΜΕ ΚΑΙ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΑΣ!!!!!!!!!!!!!!!!!!!!!!!
 

 
Τίτλος: Απ: ΘΕΜΑ Δ4
Αποστολή από: vageo στις 28 Μάι 2009, 02:07:51 μμ
Ποιά διαφορά υπάρχει ανάμεσα στους αριθμούς -32,0 και -32 ;

Αν και οι 2 αριθμοί αναφέρονται σε μετρήσεις, τότε υπάρχει διαφορά.

Ο αριθμός -32,0 μας δίνει ακρίβεια στο πρώτο δεκαδικό ψηφίο, δηλαδή γνωρίζουμε ότι ο αριθμός, που μπορεί να εκφράζει κάποια απόσταση, έχει σίγουρα το πρώτο του δεκαδικό ψηφίο 0, ενώ στον -32 η ακρίβεια είναι μικρότερη.
Τίτλος: Απ: ΘΕΜΑ 1Δ
Αποστολή από: sstergou στις 28 Μάι 2009, 02:18:01 μμ
Χ<-- -32,0
Α_Μ(-32,0) = 32
Χ - Α_Μ(Χ) = 0
ΑΡΑ Ο Χ ΑΚΕΡΑΙΟΣ
ΘΑ ΤΡΕΛΑΘΟΥΜΕ!!!!!!!!!!!!!!!!
ΘΑ ΞΕΧΑΣΟΥΜΕ ΚΑΙ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΑΣ!!!!!!!!!!!!!!!!!!!!!!!
Εδώ όμως έχουμε να κάνουμε με πληροφορική και με μνήμη.
Ο τύπος της μεταβλητής είναι κάτι διαφορετικό από το αν τιμή της ανήκει σε συγκεκριμένο μαθηματικό υποσύνολο.

Συγκεκριμένα στη γλώσσα είναι αυτός που έχεις δηλώσει.

Στο παράδειγμά σου αν δηλώσεις το χ ακέραιο θα πάρεις ένα λάθος τύπων.
Τίτλος: Απ: ΘΕΜΑ 1Δ
Αποστολή από: evry στις 28 Μάι 2009, 02:38:33 μμ
Δεν έλεγε να αποδείξεις τίποτα, έλεγε να ελέγξεις, το παράδειγμα που δίνεις παρακάτω δε λέει τίποτα. Συγχέεις την μαθηματική έννοια του ακέραιου/πραγματικού με τον τύπο ακέραιος πραγματικός. Δεν είναι το ίδιο.

ΣΧΕΤΙΚΑ ΜΕ ΤΟ ΘΕΜΑ 1Δ
ΘΕΜΑ ΠΑΝ ΕΞΕΤΑΣΕΩΝ ΝΟΜΙΖΩ 2002 ΕΠΑΝΑΛΗΠΤΙΚΑ


ΝΑ ΑΠΟΔΕΙΞΕΤΕ ΟΤΙ Ο ΑΡΙΘΜΟΣ Χ ΕΙΝΑΙ ΑΚΕΡΑΙΟΣ Ή ΠΡΑΓΜΑΤΙΚΟΣ
ΑΠΑΝΤΗΣΗ
 ΑΝ (Χ- Α_Μ(Χ) = 0) ΤΟΤΕ
    ΓΡΑΨΕ 'Ο ΑΡΙΘΜΟΣ ΕΙΝΑΙ ΑΚΕΡΑΙΟΣ'
 ΑΛΛΙΩΣ
   ΓΡΑΨΕ ' Ο ΑΡΙΘΜΟΣ ΠΡΑΓΜΑΤΙΚΟΣ'
 ΤΕΛΟΣ_ΑΝ

ΣΤΟ ΘΕΜΑ ΤΟ ΔΙΚΟ ΜΑΣ
Χ<-- -32,0
Α_Μ(-32,0) = 32
Χ - Α_Μ(Χ) = 0
ΑΡΑ Ο Χ ΑΚΕΡΑΙΟΣ
ΘΑ ΤΡΕΛΑΘΟΥΜΕ!!!!!!!!!!!!!!!!

Δεν κάνουμε μαθηματικά!!! Πληροφορική κάνουμε και για όσους δεν το ξέρουν είναι μια άλλη επιστήμη
Παράθεση
ΘΑ ΞΕΧΑΣΟΥΜΕ ΚΑΙ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΑΣ!!!!!!!!!!!!!!!!!!!!!!!
Τίτλος: Απ: ΘΕΜΑ Δ4
Αποστολή από: evry στις 28 Μάι 2009, 02:40:19 μμ
Ποιά διαφορά υπάρχει ανάμεσα στους αριθμούς -32,0 και -32 ;
Στους αριθμούς καμία. Στις θέσεις μνήμης που θα αποθηκευτούν τεράστια όμως. Διάβασε για αναπαράσταση αριθμών στη μνήμη του υπολογιστή
Τίτλος: Απ: ΘΕΜΑ Δ4
Αποστολή από: Σούλας Βασίλης στις 28 Μάι 2009, 03:41:35 μμ
Στα μαθηματικά το Χ<--Χ+1 είναι άτοπο (1=0) αν θεωρήσεις το <-- σαν το = στα μαθηματικά.
Άλλο η έννοια του τύπου της μεταβλητής και άλλο η μαθηματική έννοια πραγματικού, ακέραιου.
Τίτλος: Απ: ΘΕΜΑ Δ4
Αποστολή από: arwd στις 28 Μάι 2009, 04:04:17 μμ
To θέμα είναι αν μπορεί να εκχωρεί και όχι τι ισχύει στα μαθηματικά και τι εδώ νομίζω!
Τίτλος: Απ: ΘΕΜΑ Δ4
Αποστολή από: Παναγιώτης Τσιωτάκης στις 28 Μάι 2009, 08:17:54 μμ
ΣΧΕΤΙΚΑ ΜΕ ΤΟ ΘΕΜΑ 1Δ
ΘΕΜΑ ΠΑΝ ΕΞΕΤΑΣΕΩΝ ΝΟΜΙΖΩ 2002 ΕΠΑΝΑΛΗΠΤΙΚΑ


ΝΑ ΑΠΟΔΕΙΞΕΤΕ ΟΤΙ Ο ΑΡΙΘΜΟΣ Χ ΕΙΝΑΙ ΑΚΕΡΑΙΟΣ Ή ΠΡΑΓΜΑΤΙΚΟΣ
ΑΠΑΝΤΗΣΗ
 ΑΝ (Χ- Α_Μ(Χ) = 0) ΤΟΤΕ
    ΓΡΑΨΕ 'Ο ΑΡΙΘΜΟΣ ΕΙΝΑΙ ΑΚΕΡΑΙΟΣ'
 ΑΛΛΙΩΣ
   ΓΡΑΨΕ ' Ο ΑΡΙΘΜΟΣ ΠΡΑΓΜΑΤΙΚΟΣ'
 ΤΕΛΟΣ_ΑΝ

ΣΤΟ ΘΕΜΑ ΤΟ ΔΙΚΟ ΜΑΣ
Χ<-- -32,0
Α_Μ(-32,0) = 32
Χ - Α_Μ(Χ) = 0
ΑΡΑ Ο Χ ΑΚΕΡΑΙΟΣ
ΘΑ ΤΡΕΛΑΘΟΥΜΕ!!!!!!!!!!!!!!!!
ΘΑ ΞΕΧΑΣΟΥΜΕ ΚΑΙ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΑΣ!!!!!!!!!!!!!!!!!!!!!!!


Στη ΓΛΩΣΣΑ το Χ θα το δηλώσεις ακέραιο ή πραγματικό;
Τίτλος: ΘΕΜΑ 1Δ
Αποστολή από: tkon στις 29 Μάι 2009, 01:09:37 μμ
ΣΧΕΤΙΚΑ ΜΕ ΤΟ ΘΕΜΑ 1Δ
ΘΕΜΑ ΠΑΝ ΕΞΕΤΑΣΕΩΝ ΝΟΜΙΖΩ 2002 ΕΠΑΝΑΛΗΠΤΙΚΑ

ΝΑ ΑΠΟΔΕΙΞΕΤΕ ΟΤΙ Ο ΑΡΙΘΜΟΣ Χ ΕΙΝΑΙ ΑΚΕΡΑΙΟΣ Ή ΠΡΑΓΜΑΤΙΚΟΣΑΠΑΝΤΗΣΗ
 ΑΝ (Χ- Α_Μ(Χ) = 0) ΤΟΤΕ
    ΓΡΑΨΕ 'Ο ΑΡΙΘΜΟΣ ΕΙΝΑΙ ΑΚΕΡΑΙΟΣ'
 ΑΛΛΙΩΣ
   ΓΡΑΨΕ ' Ο ΑΡΙΘΜΟΣ ΠΡΑΓΜΑΤΙΚΟΣ'
 ΤΕΛΟΣ_ΑΝ

ΣΤΟ ΘΕΜΑ ΤΟ ΔΙΚΟ ΜΑΣ
Χ<-- -32,0
Α_Μ(-32,0) = 32
Χ - Α_Μ(Χ) = 0
ΑΡΑ Ο Χ ΑΚΕΡΑΙΟΣ
ΘΑ ΤΡΕΛΑΘΟΥΜΕ!!!!!!!!!!!!!!!!
ΘΑ ΞΕΧΑΣΟΥΜΕ ΚΑΙ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΑΣ!!!!!!!!!!!!!!!!!!!!!!!
Τίτλος: Απ: ΘΕΜΑ Δ4
Αποστολή από: bagelis στις 29 Μάι 2009, 01:56:00 μμ
Το σοβαρότερο πρόβλημα που υπάρχει είναι η αναφορά στο σχολικό βιβλίο: "οι γνωστοί από τα μαθηματικά" όπως εύστοχα είχε θέσει κάποιος μαθητής παραπάνω.....

Φυσικά για όλους εμάς είναι πραγματικός αλλά με βάση τη πρόταση αυτή στο σχολικό βιβλίο μπορούμε να είμαστε τυπικά εντάξει?
Τίτλος: Απ: ΘΕΜΑ 1Δ
Αποστολή από: pik στις 29 Μάι 2009, 02:20:16 μμ
Δεν κάνουμε μαθηματικά!!! Πληροφορική κάνουμε και για όσους δεν το ξέρουν είναι μια άλλη επιστήμη


Χωρίς να θέλω να διαφωνήσω μαζί σου, το βιβλίο (άστοχα για μένα), προσπαθώντας ίσως να αποφύγει να διατυπώσει αυστηρότερος ορισμούς για του τύπους και τις μετατροπές τους (ρητές και αυτόματες), πετάει τη μπάλα στην κερκίδα των μαθηματικών:

Παράθεση από: Βιβλίο, σελ 148-149
Ακέραιος τύπος. Ο τύπος αυτός περιλαμβάνει τους ακέραιους που είναι γνωστοί από τα μαθηματικά. Οι ακέραιοι μπορούν να είναι θετικοί, αρνητικοί ή μηδέν. Παραδείγματα ακεραίων είναι οι αριθμοί 1, 3409, 0, -980.

Πραγματικός τύπος. Ο τύπος αυτός περιλαμβάνει τους πραγματικούς
αριθμούς που γνωρίζουμε από τα μαθηματικά
. Οι αριθμοί 3.14159, 148 2.71828, -112.45, 0.45 είναι πραγματικοί αριθμοί. Και οι πραγματικοί αριθμοί μπορούν να είναι θετικοί, αρνητικοί ή μηδέν.

Οπότε, αν πάμε με το βιβλίο στο χέρι (και αγνοήσουμε τη διαφορά "," και "."), το 32,0 είναι ακέραιος, και επίσης είναι και πραγματικός.
Τίτλος: Απ: ΘΕΜΑ 1Δ
Αποστολή από: gpapargi στις 29 Μάι 2009, 02:22:05 μμ
ΣΧΕΤΙΚΑ ΜΕ ΤΟ ΘΕΜΑ 1Δ
ΘΕΜΑ ΠΑΝ ΕΞΕΤΑΣΕΩΝ ΝΟΜΙΖΩ 2002 ΕΠΑΝΑΛΗΠΤΙΚΑ

ΝΑ ΑΠΟΔΕΙΞΕΤΕ ΟΤΙ Ο ΑΡΙΘΜΟΣ Χ ΕΙΝΑΙ ΑΚΕΡΑΙΟΣ Ή ΠΡΑΓΜΑΤΙΚΟΣΑΠΑΝΤΗΣΗ
 ΑΝ (Χ- Α_Μ(Χ) = 0) ΤΟΤΕ
    ΓΡΑΨΕ 'Ο ΑΡΙΘΜΟΣ ΕΙΝΑΙ ΑΚΕΡΑΙΟΣ'
 ΑΛΛΙΩΣ
   ΓΡΑΨΕ ' Ο ΑΡΙΘΜΟΣ ΠΡΑΓΜΑΤΙΚΟΣ'
 ΤΕΛΟΣ_ΑΝ

ΣΤΟ ΘΕΜΑ ΤΟ ΔΙΚΟ ΜΑΣ
Χ<-- -32,0
Α_Μ(-32,0) = 32
Χ - Α_Μ(Χ) = 0
ΑΡΑ Ο Χ ΑΚΕΡΑΙΟΣ
ΘΑ ΤΡΕΛΑΘΟΥΜΕ!!!!!!!!!!!!!!!!
ΘΑ ΞΕΧΑΣΟΥΜΕ ΚΑΙ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΑΣ!!!!!!!!!!!!!!!!!!!!!!!

Στα μαθηματικά κάθε ακέραιος είναι πραγματικός επειδή το Ν είναι υποσύνολο του R. Αυτό που εννοεί το παλιό θέμα είναι αν η τιμή του Χ είναι ακέραια δηλαδή αν το Χ ανήκει και στο Ν εκτός από το R που προφανώς ισχύει πάντα.

Στο φετινό θέμα αυτό που εννοεί είναι ο τύπος δεδομένων (το λέει καθαρά η εκφώνηση). Το μόνο που θα μπορούσε να πει κάποιος είναι ότι στη ΓΛΩΣΣΑ η υποδιαστολή είναι «.» και όχι «,»
Δέχομαι ότι λαθάκι της επιτροπής από αυτά τα μικρά που γίνονται πάντα. Όμως δε σηκώνει περιθώρια παρερμηνείας. Όλοι καταλαβαίνουν ότι είναι υποδιαστολή.

Στον κώδικα που γράφεις tkon αν βάλεις όπου Χ το -32.0 τότε θα σου βγάλει ότι είναι ακέραιος. Αυτό σημαίνει ότι η τιμή είναι ακέραια. Όμως δε σημαίνει ότι ο τύπος δεδομένων της μεταβλητής Χ είναι ακέραιος. Πραγματική θα την δηλώσεις για να μπορεί να εκτελεστεί  το πρόγραμμα για κάθε τιμή που θα δοθεί ως είσοδος. Δοκίμασε να φτιάξεις αυτό το πρόγραμμα στο Διερμηνευτή και δες τι θα γίνει αν δηλώσεις το Χ στις ακέραιες. 
Τίτλος: Απ: ΘΕΜΑ Δ4
Αποστολή από: Παναγιώτης Τσιωτάκης στις 29 Μάι 2009, 03:09:38 μμ
Παίδες, μετά αυτά τα θέματα καταλήξαμε να συζητάμε αν το -32,0 είναι πραγματικό ή ακέραιος στη ΓΛΩΣΣΑ!!
Τίτλος: Απ: ΘΕΜΑ Δ4
Αποστολή από: Παναγιώτης Τσιωτάκης στις 29 Μάι 2009, 03:11:50 μμ
Παίδες, μετά αυτά τα θέματα καταλήξαμε να συζητάμε αν το -32,0 είναι πραγματικό ή ακέραιος στη ΓΛΩΣΣΑ!!
Τίτλος: Απ: ΘΕΜΑ Δ4
Αποστολή από: COACH στις 29 Μάι 2009, 03:45:13 μμ
Παίδες, μετά αυτά τα θέματα καταλήξαμε να συζητάμε αν το -32,0 είναι πραγματικό ή ακέραιος στη ΓΛΩΣΣΑ!!
Συμφωνώ...

Το θέμα το είχαμε διαπραγαμτευτεί στο στέκι στο διαγώνισμα του 2007-2008 τελικό "Αφού οι ακέραιοι είναι υποσύνολο των πραγματικών γιατί να υπάρχουν και οι 2 τύπο μεταβλητών..."

Είναι το ίδιο ζήτημα....


Τίτλος: Απ: ΘΕΜΑ Δ4
Αποστολή από: Keep Growing στις 15 Ιαν 2011, 03:58:32 μμ
Και επειδή υποψιάζομαι ότι μπορεί να προκύψει κανένα θέμα διαφοράς πραγματικών ακεραίων αριθμών- όπως συνέβηκε στο παρελθόν - παραθέτω την ίδια λύση με μια πολύ μικρή τροποποίηση.  :)
Τίτλος: Απ: ΘΕΜΑ Δ4
Αποστολή από: evry στις 15 Ιαν 2011, 04:24:03 μμ
Σχετικά με τους πραγματικούς -ακεραίους αναφέρεσαι στο ότι η πράξη 10^χ έχει σαν αποτέλεσμα πραγματικό?
γιατί εκεί μπορείς να χρησιμοποιήσεις το Α_Μ
ή αναφέρεσαι στην πράξη αριθμός / 10 ?
Εδώ μπορείς να χρησιμοποιήσεις είτε ακέραιο μέρος , Α_Μ(αριθμός/10) ή τον τελεστή div δηλαδή  απλά αριθμός div 10
Τίτλος: Απ: ΘΕΜΑ Δ4
Αποστολή από: Keep Growing στις 15 Ιαν 2011, 06:26:37 μμ
...όχι. Η αλλαγή που έκανα είναι: ΓΡΑΨΕ Α_Μ (νεος_αριθμός)  , για να μην εμφανίζεται το δεκαδικό μέρος του αποτελέσματος.